Unit One: Differential Equations

(Reference: Advanced Engineering Mathematics, by Dennis G. Zill, $6^{\text {th }}$ edition, 2018.)

1.1 Basic Definitions and Concepts:

An equation containing the derivatives of one or more dependent variables, with respect to one or more independent variables, is said to be a differential equation (DE). The derivative $d y / d x$ of a function $y=\phi(x)$ is itself another function $\phi^{\prime}(x)$ found by an appropriate rule.

Ordinary Differential Equation (ODE) is a differential equation contains only ordinary derivatives of one or more functions with respect to a single independent variable.

Partial Differential Equation (PDE) is an equation contains only partial derivatives of one or more functions of two or more independent variables.

The order of a differential equation is the order of the highest derivative appearing in the equation.
The degree of a differential equation is defined as the power to which the highest order derivative is raised.

Notation

The expressions $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, y^{(4)}, \ldots, y^{(n)}$ are often used to represent, respectively, the first, second, third, fourth, . . . nth derivatives of y with respect to the independent variable under consideration.

If the independent variable is time, usually denoted by t, primes are often replaced by dots. Thus, \dot{y}, \ddot{y}, and \ddot{y} represent $d y / d t, d^{2} y / d t^{2}$, and $d^{3} y / d t^{3}$, respectively.

Examples:
(1) $\frac{d y}{d x}+6 y=e^{-x}$
(2) $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-12 y=0$
(3) $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial u}{\partial t}$
(4) $u_{x x}=u_{t t}-u_{t}$
(5) $\frac{d^{2} y}{d x^{2}}+5\left(\frac{d y}{d x}\right)^{3}-4 y=e^{x}$
(6) $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+3 y\left(\frac{d y}{d x}\right)^{7}+y^{3}\left(\frac{d y}{d x}\right)^{2}=5 x$

We can express the n th-order ordinary differential equation in one dependent variable by the general form

$$
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

or by the normal form

$$
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right)
$$

EXAMPLE Normal Form of an ODE
(a)

$$
4 x \frac{d y}{d x}+y=x \quad \text { is } \quad \frac{d y}{d x}=\frac{x-y}{4 x}
$$

(b)

$$
y^{\prime \prime}-y^{\prime}+6 y=0 \quad \text { is } \quad y^{\prime \prime}=y^{\prime}-6 y
$$

Linearity: An n th-order ordinary differential equation is said to be linear in the variable y if \boldsymbol{F} is linear in $y, y^{\prime}, \ldots, y^{(n)}$.
A nonlinear ordinary differential equation is simply one that is not linear.

Standard and Differential Forms

Standard form for a first-order differential equation in the unknown function $y(x)$ is

$$
y^{\prime}=f(x, y)
$$

while the differential form is

$$
M(x, y) d x+N(x, y) d y=0
$$

EXAMPLE Linear and Nonlinear Differential Equations

(a) The equations

$$
(y-x) d x+4 x d y=0, \quad y^{\prime \prime}-2 y^{\prime}+y=0, \quad x^{3} \frac{d^{3} y}{d x^{3}}+3 x \frac{d y}{d x}-5 y=e^{x}
$$

are, in turn, examples of linear first-, second-, and third-order ordinary differential equations.
(b) The equations

are examples of nonlinear first-, second-, and fourth-order ordinary differential equations, respectively.
A solution of a differential equation in the unknown function y and the independent variable x on the interval I is a function $y(x)$ that satisfies the differential equation identically for all x in I.

Note: A particular solution of a differential equation is any one solution.
The general solution of a differential equation is the set of all solutions.

EXAMPLE Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on the interval $(-\infty, \infty)$.
(a) $\frac{d y}{d x}=x y^{1 / 2} ; \quad y=\frac{1}{16} x^{4}$
(b) $y^{\prime \prime}-2 y^{\prime}+y=0 ; \quad y=x e^{x}$

SOLUTION One way of verifying that the given function is a solution is to see, after substituting, whether each side of the equation is the same for every x.
(a) From left-hand side: $\frac{d y}{d x}=4 \cdot \frac{x^{3}}{16}=\frac{x^{3}}{4}$

$$
\text { right-hand side: } x y^{1 / 2}=x \cdot\left(\frac{x^{4}}{16}\right)^{1 / 2}=x \cdot \frac{x^{2}}{4}=\frac{x^{3}}{4}
$$

we see that each side of the equation is the same for every real number x. Note that $y^{1 / 2}=\frac{1}{4} x^{2}$ is, by definition, the nonnegative square root of $\frac{1}{16} x^{4}$.
(b) From the derivatives $y^{\prime}=x e^{x}+e^{x}$ and $y^{\prime \prime}=x e^{x}+2 e^{x}$ we have for every real number x, left-hand side: $y^{\prime \prime}-2 y^{\prime}+y=\left(x e^{x}+2 e^{x}\right)-2\left(x e^{x}+e^{x}\right)+x e^{x}=0$ right-hand side: 0.

Note, too, that each differential equation possesses the constant solution $y=0$. A solution of a differential equation that is identically zero on an interval I is said to be a trivial solution.

Initial-Value and Boundary-Value Problems

A differential equation along with conditions on the unknown function and its derivatives, all given at the same value of the independent variable, constitutes an initialvalue problem (IVP). These conditions are initial conditions. If the conditions are given at more than one value of the independent variable, the problem is a boundary-value problem (BVP) and the conditions are boundary conditions.
Typically, initial value problems involve time dependent functions, while boundary value problems are spatial.
Example: The problem $y^{\prime \prime}+2 y^{\prime}=e^{x} ; y(\pi)=1, y^{\prime}(\pi)=2$ is an initial value problem, because the two subsidiary conditions are both given at $x=\pi$.
The problem $y^{\prime \prime}+2 y^{\prime}=e^{x} ; y(0)=1, y(1)=1$ is a boundary-value problem, because the two subsidiary conditions are given at $x=0$ and $x=1$.

1.2 Solutions of the First Order D.Es

1.2.1 Separable D.Es

A first-order differential equation of the form

$$
\frac{d y}{d x}=g(x) h(y)
$$

is said to be separable or to have separable variables. For example, the differential equations

$$
\frac{d y}{d x}=x^{2} y^{4} e^{5 x-3 y} \quad \text { and } \quad \frac{d y}{d x}=y+\cos x
$$

are separable and nonseparable, respectively. To see this, note that we can factor the first equation as

$$
f(x, y)=x^{2} y^{4} e^{5 x-3 y}=\left(x^{2} e^{5 x}\right)\left(y^{4} e^{-3 y}\right)
$$

but in the second there is no way writing $y+\cos x$ as a product of a function of x times a function of y.

EXAMPLE 1

Solve $(1+x) d y-y d x=0$.
SOLUTION Dividing by $(1+x) y$, we can write $d y / y=d x /(1+x)$, from which it follows that

$$
\begin{array}{rlrl}
\int \frac{d y}{y} & =\int \frac{d x}{1+x} & & \\
\ln |y| & =\ln |1+x|+c_{1} & & \\
|y| & =e^{\ln |1+x|+c_{1}}=e^{\ln |1+x|} \cdot e^{c_{1}} & \leftarrow \text { laws of exponents } \\
& =|1+x| e^{c_{1}} & & \leftarrow \begin{cases}|1+x|=1+x, & x \geq-1 \\
11+x \mid=-(1+x), & x<-1\end{cases} \\
y & = \pm e^{c_{1}}(1+x) . & &
\end{array}
$$

and so
Relabeling $\pm e^{c_{1}}$ by c then gives $y=c(1+x)$.

EXAMPLE 2 Solution Curve

Solve the initial-value problem $\frac{d y}{d x}=-\frac{x}{y}, \quad y(4)=-3$.
SOLUTION By rewriting the equation as $y d y=-x d x$ we get

$$
\int y d y=-\int x d x \quad \text { and } \quad \frac{y^{2}}{2}=-\frac{x^{2}}{2}+c_{1} .
$$

We can write the result of the integration as $x^{2}+y^{2}=c^{2}$ by replacing the constant $2 c_{1}$ by c^{2}.
Now when $x=4, y=-3$, so that $16+9=25=c^{2}$. Thus $x^{2}+y^{2}=25$.

EXAMPLE 3

Solve the initial-value problem

$$
\cos x\left(e^{2 y}-y\right) \frac{d y}{d x}=e^{y} \sin 2 x, \quad y(0)=0 .
$$

SOLUTION Dividing the equation by $e^{y} \cos x$ gives
yields

$$
\begin{gathered}
\frac{e^{2 y}-y}{e^{y}} d y=\frac{\sin 2 x}{\cos x} d x . \\
\int\left(e^{y}-y e^{-y}\right) d y=2 \int \sin x d x \\
e^{y}+y e^{-y}+e^{-y}=-2 \cos x+c .
\end{gathered}
$$

The initial condition $y=0$ when $x=0$ implies $c=4$. Thus a solution of the initial-value problem is

$$
e^{y}+y e^{-y}+e^{-y}=4-2 \cos x .
$$

Exercises 2.2 (page 48): Solve exercises 1 to 27.

1.2.2 Exact Equations

The first order ODE

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be exact if a function $f(x, y)$ exists such that the total differential

$$
\mathrm{d}[\mathrm{f}(\mathrm{x}, \mathrm{y})]=\frac{\partial \mathrm{f}}{\partial \mathrm{x}} \mathrm{dx}+\frac{\partial \mathrm{f}}{\partial \mathrm{y}} \mathrm{dy}=\mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}
$$

or $\mathrm{M}(\mathrm{x}, \mathrm{y})=\partial \mathrm{f} / \partial \mathrm{x}$ and $\mathrm{N}(\mathrm{x}, \mathrm{y})=\partial \mathrm{f} / \partial \mathrm{y}$
It follows directly that if

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact, then the total differential

$$
d[f(x, y)]=0,
$$

so the general solution of must be

$$
f(x, y)=\text { constant } .
$$

Condition of Exactness: $\quad M(x, y) d x+N(x, y) d y$ is an exact differential if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Steps for Solving an Equation You Know to Be Exact:

1- Match the equation to the form

$$
d f=\left(\frac{\partial f}{\partial x}\right) d x+\left(\frac{\partial f}{\partial y}\right) d y
$$

to identify $\partial f / \partial x$ and $\partial f / \partial y$.
2- Integrate $\partial f / \partial x$ with respect to x, writing the constant of integration as $k(y)$.
3- Differentiate with respect to y and set the result equal to $\partial f / \partial y$ to find $k^{\prime}(y)$.
4- Integrate to find $k(y)$ and determine $f(x, y)$.
5- Write the solution of the exact equation as $f(x, y)=C$.

EXAMPLE 1 Solving an Exact DE

Solve $2 x y d x+\left(x^{2}-1\right) d y=0$.
SOLUTION With $M(x, y)=2 x y$ and $N(x, y)=x^{2}-1$ we have

$$
\frac{\partial M}{\partial y}=2 x=\frac{\partial N}{\partial x} .
$$

Thus the equation is exact, and so,

$$
\frac{\partial f}{\partial x}=2 x y \quad \text { and } \quad \frac{\partial f}{\partial y}=x^{2}-1
$$

From the first of these equations we obtain, after integrating,

$$
\begin{aligned}
& f(x, y)=x^{2} y+g(y) \\
& \frac{\partial f}{\partial y}=x^{2}+g^{\prime}(y)=x^{2}-1 . \leftarrow N(x, y)
\end{aligned}
$$

It follows that $g^{\prime}(y)=-1$ and $g(y)=-y$.
Hence, $f(x, y)=x^{2} y-y$, and so the solution of the equation is $x^{2} y-y=c$

Example (2): Show that the following equation is exact and find its general solution: $\left\{3 x^{2}+2 y+2 \cosh (2 x+3 y)\right\} d x+\{2 x+2 y+3 \cosh (2 x+3 y)\} d y=0$

Solution:

$$
M(x, y)=3 x^{2}+2 y+2 \cosh (2 x+3 y)
$$

and $\quad N(x, y)=2 x+2 y+3 \cosh (2 x+3 y)$,
then $\quad M_{y}=2+6 \sinh (2 x+3 y)$
and $\quad N_{x}=2+6 \sinh (2 x+3 y)$
so, as $M_{y}=N_{x}$ the equation is exact:

$$
\begin{aligned}
f(x, y) & =\int M(x, y) d x=\int\left\{3 x^{2}+2 y+2 \cosh (2 x+3 y)\right\} d x \\
& =x^{3}+2 x y+\sinh (2 x+3 y)+k(y)
\end{aligned}
$$

$\frac{\partial f}{\partial y}=2 x+3 \cosh (2 \mathrm{x}+3 \mathrm{y})+k^{\prime}(y)=N=2 \mathrm{x}+2 \mathrm{y}+3 \cosh (2 \mathrm{x}+3 \mathrm{y})$
or $k^{\prime}(y)=2 y$ and then
$k(y)=\int 2 y d y=y^{2}$
so $f(x, y)=x^{3}+2 x y+y^{2}+\sinh (2 x+3 y)$
and the general solution is $x^{3}+2 x y+y^{2}+\sinh (2 x+3 y)=C$
(Do you know another method to find $k(y)$?)

To learn more about the exact equations, see examples 2 and 3 in pages 61 and 62 .

1.2.3 Integrating Factors

It can be shown that every nonexact differential equation $M(x, y) d x+N(x, y) d y=0$ can be made exact by multiplying both sides by a suitable factor called integrating factor $\mu(x, y)$.

- If $\left(M_{\mathrm{y}}-N_{\mathrm{x}}\right) / N$ is a function of x alone, then

$$
\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x}
$$

- If $\left(N_{\mathrm{x}}-M_{\mathrm{y}}\right) / M$ is a function of y alone, then

$$
\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y}
$$

As an example, the equation

$$
2 y d x+x d y=0
$$

is not exact, while the equation

$$
2 x y d x+x^{2} d y=0
$$

obtained by multiplying both sides by x, is exact.

eXAMPLE 4 A Nonexact DE Made Exact

The nonlinear first-order differential equation $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0$ is not exact.
With the identifications $M=x y, N=2 x^{2}+3 y^{2}-20$ we find $M_{y}=x$ and $N_{x}=4 x$.

$$
\begin{aligned}
& \frac{M_{y}-N_{x}}{N}=\frac{x-4 x}{2 x^{2}+3 y^{2}-20}=\frac{-3 x}{2 x^{2}+3 y^{2}-20} \text { depends on } x \text { and } y . \\
& \frac{N_{x}-M_{y}}{M}=\frac{4 x-x}{x y}=\frac{3 x}{x y}=\frac{3}{y} . \quad \text { depends only on } y:
\end{aligned}
$$

The integrating factor is then $e^{\int 3 d y y}=e^{3 \ln y}=e^{\ln y^{3}}=y^{3}$.
and the resulting equation is $x y^{4} d x+\left(2 x^{2} y^{3}+3 y^{5}-20 y^{3}\right) d y=0$.
(verify that the last equation is now exact, and the solution is $\frac{1}{2} x^{2} y^{4}+\frac{1}{2} y^{6}-5 y^{4}=c$).

Exercises 2.4 (page 64): Solve exercises 1 to 36.

1.2.4 Linear First Order Equations

A first-order linear differential equation has the form

$$
\begin{equation*}
y^{\prime}+p(x) y=q(x) \tag{1}
\end{equation*}
$$

An integrating factor for equation (1) is

$$
\begin{equation*}
\mu(x)=e^{\int p(x) d x} \tag{2}
\end{equation*}
$$

and the general solution of equation (1) is

$$
\begin{equation*}
y=\frac{1}{\mu(x)} \int \mu(x) q(x) d x \tag{3}
\end{equation*}
$$

Note: When $q(x)=0$, the linear equation (1) is said to be homogeneous; otherwise, it is nonhomogeneous.

Steps for solving a linear first order equation:
1- Put it in standard form, as in equation (1).
2- Find the integrating factor from equation (2).
3- Use equation (3) to find y.

Example 1: Solve $x y^{\prime}-3 y=x^{2}$.
Solution: By dividing both sides on x, the equation can be written as $y^{\prime}-(3 / x) y=x$ So it is linear, with $p(x)=-3 / x$ and $q(x)=x$.

$$
\begin{gathered}
\int p(x) d x=\int-\frac{3}{x} d x=-3 \ln x \\
\mu(x)=e^{\int p(x) d x}=e^{-3 \ln x}=\frac{1}{x^{3}} \\
y=\frac{1}{\mu(x)} \int \mu(x) q(x) d x=\frac{1}{\frac{1}{x^{3}}} \int \frac{1}{x^{3}} x d x=x^{3}\left(\frac{1}{x}+C\right)=C x^{3}-x^{2}
\end{gathered}
$$

The solution is $y=C x^{3}-x^{2}$.

Remark:

Occasionally a first-order differential equation is not linear in one variable but is linear in the other variable. For example, the differential equation

$$
\frac{d y}{d x}=\frac{1}{x+y^{2}}
$$

is not linear in the variable y. But its reciprocal

$$
\frac{d x}{d y}=x+y^{2} \text { or } \frac{d x}{d y}-x=y^{2}
$$

is recognized as linear in the variable x. You should verify that the integrating factor

$$
\mu(y)=e^{\int p(y) d y}=e^{\int(-1) d y}=e^{-y}
$$

and integration by parts yield an implicit solution of the given equation:

$$
x=-y^{2}-2 y-2+c e^{y} .
$$

[^0]
1.2.5 Homogeneous D.Es

A function $f(x, y)$ is said to be homogeneous of degree n, if $f(t x, t y)=t^{n} f(x, y)$ for some real number n.

Examples

(a) If $f(x, y)=x^{2}+3 x y+4 y^{2}$, then $f(t x, t y)=t^{2}\left(x^{2}+3 x y+4 y^{2}\right)=t^{2} f(x, y)$, so $f(x, y)$ is homogeneous of degree 2 .
(b) If $f(x, y)=\ln |y|-\ln |x|$ for $(x, y) \neq(0,0)$, then $f(x, y)=\ln |y / x|$, so $f(t x, t y)=f(x, y)$, showing that $f(x, y)$ is homogeneous of degree 0 .
(c) If

$$
f(x, y)=\frac{x^{3 / 2}+x^{1 / 2} y+3 y^{3 / 2}}{2 x^{3 / 2}-x y^{1 / 2}}, \text { then } f(t x, t y)=t^{0} f(x, y),
$$

showing that $f(x, y)$ is homogeneous of degree 0 .
(d) If $f(x, y)=x^{2}+4 y^{2}+\sin (x / y)$, then $f(t x, t y)=t^{2}\left(x^{2}+4 y^{2}\right)+\sin (x / y)$, so $f(x, y)$ is not homogeneous.
(e) If $f(x, y)=\tan (x y+1)$, then $f(t x, t y)=\tan \left(t^{2} x y+1\right)$, so $f(x, y)$ is not homogeneous.

In addition, the first order ODE in differential form

$$
P(x, y) d x+Q(x, y) d y=0
$$

is called homogeneous if P and Q are homogeneous functions of the same degree or, equivalently, if when written in the form

$$
\frac{d y}{d x}=h(x, y)
$$

the homogeneous function $h(x, y)$ can be written as $h(x, y)=F(y / x)$. We can change this equation into a separable equation by the substitution $y=v x$, then:
$\frac{d y}{d x}=\frac{d}{d x}(v x)=v+x \frac{d v}{d x}=F(v)$
which can be rearranged to give

$$
\frac{d x}{x}+\frac{d v}{v-F(v)}=0
$$

Example 1: Show that the equation

$$
\frac{d y}{d x}=-\frac{x^{2}+y^{2}}{2 x y}
$$

is homogeneous and find the solution that satisfies the condition $y(1)=1$.

Solution:

$\frac{d y}{d x}=-\frac{1+\left(\frac{y}{x}\right)^{2}}{2\left(\frac{y}{x}\right)}$
$F(v)=-\frac{1+v^{2}}{2 v} \quad$ where $v=y / x$
$\frac{d x}{x}+\frac{d v}{v+\frac{1+v^{2}}{2 v}}=0$ or $\frac{d x}{x}+\frac{2 v d v}{1+3 v^{2}}=0$
The solution of this equation is

$$
\ln |x|+\frac{1}{3} \ln \left(1+3 v^{2}\right)=C
$$

or $x^{3}\left(1+3 v^{2}\right)= \pm e^{3 C}=C_{1}$
we substitute $v=y / x$ to find the corresponding $x y$-equation:

$$
\begin{array}{ll}
& x^{3}\left(1+3 \frac{y^{2}}{x^{2}}\right)=C_{1} \\
\text { or } \quad & x^{3}+3 x y^{2}=C_{1} \\
& \left(1^{3}+3(1)(1)^{2}\right)=C_{1} \quad \text { or } C_{1}=4
\end{array}
$$

The solution is $x^{3}+3 x y^{2}=4$

1.2.6 Bernoulli's Equation

The Bernoulli equation is a nonlinear first order DE with the standard form

$$
\frac{d y}{d x}+P(x) y=Q(x) y^{n}
$$

1- When $n=0$ the equation is First Order Linear DE.
2- When $n=1$ the equation can be solved using Separation of Variables.
3- For other values of n the equation cannot be solved by separation of variables or linearity or homogeneity, but we can solve it by substituting

$$
u=y^{l-n}
$$

and turning it into a linear differential equation (and then solve that).
and thus, the Bernoulli equation becomes

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) Q(x)
$$

(Prove that!)
Taking an integrating factor as

$$
\mu(x)=e^{\int(1-n) P(x) d x}
$$

then the general solution of Bernoulli equation is

$$
u=\frac{1}{\mu(x)} \int(1-n) \mu(x) Q(x) d x
$$

EXAMPLE 1 Solving a Bernoulli DE

Solve $x \frac{d y}{d x}+y=x^{2} y^{2}$.

SOLUTION

$$
\frac{d y}{d x}+\frac{1}{x} y=x y^{2} .
$$

With $n=2$, we next substitute $y=u^{-1}, P(x)=1 / x$, and $Q(x)=x$ into equation

$$
\frac{d u}{d x}+(1-n) P(x) u=(1-n) Q(x)
$$

and simplify, the result is

$$
\frac{d u}{d x}-\frac{1}{x} u=-x
$$

The integrating factor is $\quad \mu(x)=\mathrm{e}^{-\int d x / x}=e^{-\ln x}=e^{\ln x^{-1}}=x^{-1}$

$$
\begin{aligned}
u=\frac{1}{x^{-1}} \int(1-2) x^{-1} x d x=-x \int d x & =-x(x+C) \\
u & =-x^{2}-C x
\end{aligned}
$$

But $u=y^{-1}$, then $y=-1 /\left(x^{2}+C x\right)$

Additional Exercises: Solve the following DEs:

DE's

1. $\frac{d y}{d x}-\frac{1}{x} y=x y^{2}$
2. $\frac{d y}{d x}+\frac{y}{x}=y^{2}$
$\frac{1}{y}=x(C-\ln x)$,
3. $\frac{d y}{d x}+\frac{1}{3} y=e^{x} y^{4}$
$\frac{1}{y^{3}}=e^{x}(C-3 x)$,
4. $x \frac{d y}{d x}+y=x y^{3}$
$y^{2}=\frac{1}{2 x+C x^{2}}$,
5. $\frac{d y}{d x}+\frac{2}{x} y=-x^{2} \cos x \cdot y^{2}$
$\frac{1}{y}=x^{2}(\sin x+C)$,
6. $2 \frac{d y}{d x}+\tan x \cdot y=\frac{(4 x+5)^{2}}{\cos x} y^{3}$

$$
\begin{aligned}
& \frac{1}{y^{2}}=\frac{-1}{12 \cos x}(4 x+5)^{3}+\frac{C}{\cos x} \\
& \frac{1}{x y}=C+x(1-\ln x)
\end{aligned}
$$

7. $x \frac{d y}{d x}+y=y^{2} x^{2} \ln x$
8. $\frac{d y}{d x}=y \cot x+y^{3} \operatorname{cosec} x$

1.3 Solutions of the Second-Order D.Es

1.3.1 Second-Order DE Reducible to First Order

A second order DE has the general form

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0
$$

Equation above is called reducible second order DE if either the dependent variable y or the independent variable x is missing in it.
Case I: $F\left(x, y^{\prime}, y^{\prime \prime}\right)=0$ (Dependent variable y missing)
The substitution $p=y^{\prime}=\frac{d y}{d x}, y^{\prime \prime}=\frac{d p}{d x}$ results in $F\left(x, p, p^{\prime}\right)=0$.
Case II : $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$ (Independent variable x missing)
The substitution $p=y^{\prime}=\frac{d y}{d x}, y^{\prime \prime}=\frac{d p}{d y} \frac{d y}{d x}=p \frac{d p}{d y} \quad$ results in $F\left(y, p, p \frac{d p}{d y}\right)=0$.
Example 1: Solve the equation $x y^{\prime \prime}+2 y^{\prime}=6 x$.
Solution: Let $p=y^{\prime}=\frac{d y}{d x}$ and $y^{\prime \prime}=\frac{d p}{d x} \quad$, then

$$
x p^{\prime}+2 p=6 x
$$

or $p^{\prime}+2 x p=6$, which is a linear first order equation.
$\mu(x)=e^{\int \frac{2}{x} d x}=e^{2 \ln x}=e^{\ln \left(x^{2}\right)}=x^{2}$
$p=\frac{1}{x^{2}} \int 6 x^{2} d x=2 x+\frac{C_{1}}{x^{2}}$
$y=\int\left(2 x+\frac{C_{1}}{x^{2}}\right) d x=x^{2}-\frac{C_{1}}{x}+C_{2}$
Example 2: Solve the equation $y y^{\prime \prime}=\left(y^{\prime}\right)^{2}$.
Solution:

$$
\begin{aligned}
& y p \frac{d v}{d y}=p^{2} \\
& \int \frac{d p}{p}=\int \frac{d y}{y} \quad \Longrightarrow \quad \ln p=\ln y+\ln C_{1} \quad \Longrightarrow \quad p=C_{1} y \\
& \text { Since } p=\frac{d y}{d x} \text {, we have } \\
& \qquad \frac{d y}{d x}=C_{1} y \quad \Longrightarrow \quad \int \frac{d y}{y}=\int C_{1} d x \quad \Longrightarrow \quad \ln y=C_{1} x+\ln C_{2},
\end{aligned}
$$

so that the general solution is $y(x)=C_{2} e^{C_{1} x}$.

Example 3: Solve the equation $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$

Solution:

$$
\begin{aligned}
& y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0 \\
& p=y^{\prime} ; p \frac{d p}{d y}=y^{\prime \prime} \\
& y p \frac{d p}{d y}+p^{2}=0 \Rightarrow \frac{d p}{d y}=\frac{-1}{y} p \\
& \frac{1}{p} d p=\frac{-1}{y} d y \Rightarrow \int \frac{1}{p} d p=\int \frac{-1}{y} d y \Rightarrow \ln p=-\ln y+C \\
& p=e^{C} y^{-1} \Rightarrow p=\frac{C}{y} \Rightarrow C=y p \\
& C=y \frac{d y}{d x} \Rightarrow y d y=C d x \Rightarrow \int y d y=\int C d x \\
& \frac{y^{2}}{2}=C x+D \Rightarrow y^{2}=C x+D
\end{aligned}
$$

Example 4: Solve the equation $\frac{d^{2} y}{d^{2} x}+y=0$.
Solution: Let $p=\frac{d y}{d x}, y^{\prime \prime}=p \frac{d p}{d y}$
$p \frac{d p}{d y}+y=0 \quad$ or $\quad p d p+y d y=0$
$\frac{p^{2}}{2}+\frac{y^{2}}{2}=C$, let $C=\frac{C_{1}^{2}}{2}$
then $\frac{p^{2}}{2}+\frac{y^{2}}{2}=\frac{C_{1}^{2}}{2} \rightarrow p=\frac{d y}{d x}= \pm \sqrt{C_{1}-y^{2}}$
$\frac{d y}{ \pm \sqrt{C_{1}-y^{2}}}= \pm d x$
$\sin ^{-1} \frac{y}{C_{1}}= \pm\left(x+C_{2}\right) \quad$ or $\quad y=C_{1} \sin \left[\pm\left(x+C_{2}\right)\right]= \pm C_{1} \sin \left(x+C_{2}\right)$
$y=C_{1} \sin \left(x+C_{2}\right) \quad$ (Since C_{1} is arbitrary, there is no need for \pm sign)

Exercises: Find general solutions of the following reducible second order differential equations.
a) $x y^{\prime \prime}=y^{\prime}$
b) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
c) $x y^{\prime \prime}+y^{\prime}=4 x$
d) $y^{\prime \prime}=\left(y^{\prime}\right)^{2}$
e) $x^{2} y^{\prime \prime}+3 x y^{\prime}=2$
f) $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=y y^{\prime}$
g) $y^{\prime \prime}=\left(x+y^{\prime}\right)^{2}$
h) $y^{\prime \prime}=2 y\left(y^{\prime}\right)^{3}$
i) $y^{3} y^{\prime \prime}=1$
j) $y^{\prime \prime}=2 y y^{\prime}$
k) $y y^{\prime \prime}=3\left(y^{\prime}\right)^{2}$

1) $y^{\prime \prime}+4 y=0$

1.3.2 Homogeneous Linear Equations with Constant Coefficients

A linear n th-order differential equation of the form

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

is said to be homogeneous, whereas an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

with $\mathrm{g}(\mathrm{x})$ not identically zero is said to be nonhomogeneous.
If $y_{1}(x)$ and $y_{2}(x)$ are two solutions to the linear homogeneous equation, then for any constants c_{1} and c_{2}, the function $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is also a solution.

Differential Operator

Differentiation is often denoted by the capital letter D ; that is

$$
\frac{d y}{d x}=D y
$$

The symbol D is called a differential operator.
Examples: $D(\cos 4 x)=-4 \sin 4 x, D\left(5 x^{3}-6 x^{2}\right)=15 x^{2}-12 x$

The Characteristic Equation

Consider the special case of linear second order DE with constant coefficients:

$$
a \frac{d^{2} y}{d^{2} x}+b \frac{d y}{d x}+c y=0
$$

If we try a solution of the form $y=\mathrm{e}^{m x}$, then

$$
a m^{2} e^{m x}+b m e^{m x}+c e^{m x}=0 \quad \text { or } \quad e^{m x}\left(a m^{2}+b m+c\right)=0
$$

Since $\mathrm{e}^{m x}$ is never zero for real values of x, then

$$
a m^{2}+b m+c=0
$$

This last equation is called the characteristic equation. There will be three forms of the general solution corresponding to the type of the roots m_{1} and m_{2}.

Case I : Distinct Real Roots

If m_{1} and m_{2} are unequal real roots, the general solution is:

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case II : Repeated Real Roots

When m_{1} and m_{2} are equal real roots ($m_{1}=m_{2}$, the general solution is:

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

Case III : Conjugate Complex Roots

If m_{1} and m_{2} are complex, or $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, the general solution is

$$
y=c_{1} e^{\alpha x} \cos \beta x+c_{2} e^{\alpha x} \sin \beta x=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
$$

EXAMPLE 1 Second-Order DEs

Solve the following differential equations.
(a) $2 y^{\prime \prime}-5 y^{\prime}-3 y=0$
(b) $y^{\prime \prime}-10 y^{\prime}+25 y=0$
(c) $y^{\prime \prime}+4 y^{\prime}+7 y=0$

SOLUTION We give the auxiliary equations, the roots, and the corresponding general solutions.
(a) $2 m^{2}-5 m-3=(2 m+1)(m-3), m_{1}=-\frac{1}{2}, m_{2}=3$.

$$
y=c_{1} e^{-x / 2}+c_{2} e^{3 x}
$$

(b) $m^{2}-10 m+25=(m-5)^{2}, m_{1}=m_{2}=5$.

$$
y=c_{1} e^{5 x}+c_{2} x e^{5 x} .
$$

(c) $m^{2}+4 m+7=0, m_{1}=-2+\sqrt{3} i, m_{2}=-2-\sqrt{3} i$. We have $\alpha=-2$, and $\beta=\sqrt{3}$.

$$
y=e^{-2 x}\left(c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x\right)
$$

EXAMPLE 2

Solve the initial-value problem $4 y^{\prime \prime}+4 y^{\prime}+17 y=0, y(0)=-1, y^{\prime}(0)=2$.
SOLUTION $4 m^{2}+4 m+17=0$

$$
\begin{aligned}
m_{1} & =-\frac{1}{2}+2 i \text { and } m_{2}=-\frac{1}{2}-2 i . \\
y & =e^{-x / 2}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)
\end{aligned}
$$

Applying the condition $y(0)=-1, \quad e^{0}\left(c_{1} \cos 0+c_{2} \sin 0\right)=-1$
we see that $c_{1}=-1$.
Differentiating $y=e^{-x / 2}\left(-\cos 2 x+c_{2} \sin 2 x\right)$ and then using $y^{\prime}(0)=2$ gives
$2 c_{2}+\frac{1}{2}=2$ or $c_{2}=\frac{3}{4}$.
Hence the solution is $y=e^{-x / 2}\left(-\cos 2 x+\frac{3}{4} \sin 2 x\right)$

REMARKS:

(1) Characteristic equations are only defined for linear homogeneous differential equations with constant coefficients.
(2) The method of this section also works for homogeneous linear first-order differential equations $a y^{\prime}+b y=0$ with constant coefficients.

Exercises 3.3 (page 125): Solve exercises 1 to 14, and exercises 29 to 34 .

1.3.2 Non-Homogeneous Linear Equations with Constant Coefficients

The general solution $y=y(x)$ to the nonhomogeneous differential equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=G(x) \tag{1}
\end{equation*}
$$

has the form $y=y_{\mathrm{c}}+y_{\mathrm{p}}$,
where the complementary solution $y_{\mathrm{c}}=c_{1} y_{1}+c_{2} y_{2}$ is the general solution to the associated homogeneous equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{2}
\end{equation*}
$$

and y_{p} is any particular solution to the nonhomogeneous equation (1).

1- Method of Undetermined Coefficients

| The method of undetermined coefficients for selected equations of the form |
| :---: | :---: | :---: |
| $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$. |

EXAMPLE 1

Solve $y^{\prime \prime}+4 y^{\prime}-2 y=2 x^{2}-3 x+6$.

SOLUTION

Step 1 We first solve the associated homogeneous equation $y^{\prime \prime}+4 y^{\prime}-2 y=0$.

$$
\begin{aligned}
& m^{2}+4 m-2=0 \\
& m_{1}=-2-\sqrt{6} \text { and } m_{2}=-2+\sqrt{6} . \\
& y_{c}=c_{1} e^{-(2+\sqrt{6}) x}+c_{2} e^{(-2+\sqrt{6}) x}
\end{aligned}
$$

Step 2 assume $y_{p}=A x^{2}+B x+C$.

$$
\begin{aligned}
& y_{p}^{\prime}=2 A x+B \text { and } y_{p}^{\prime \prime}=2 A \\
& \begin{aligned}
y_{p}^{\prime \prime}+4 y_{p}^{\prime}-2 y_{p} & =2 A+8 A x+4 B-2 A x^{2}-2 B x-2 C \\
& =2 x^{2}-3 x+6
\end{aligned}
\end{aligned}
$$

$$
-2 A=2, \quad 8 A-2 B=-3, \quad 2 A+4 B-2 C=6 .
$$

Solving this system of equations leads to the values $A=-1, B=-\frac{5}{2}$, and $C=-9$.
Thus $\quad y_{p}=-x^{2}-\frac{5}{2} x-9$.
Step 3 The general solution is

$$
y=y_{c}+y_{p}=c_{1} e^{-(2+\sqrt{6}) x}+c_{2} e^{(-2+\sqrt{6}) x}-x^{2}-\frac{5}{2} x-9 .
$$

EXAMPLE 2

Find a particular solution of $y^{\prime \prime}-y^{\prime}+y=2 \sin 3 x$.

SOLUTION

$$
\begin{gathered}
y_{p}=A \cos 3 x+B \sin 3 x . \\
y_{p}^{\prime \prime}-y_{p}^{\prime}+y_{p}=(-8 A-3 B) \cos 3 x+(3 A-8 B) \sin 3 x=2 \sin 3 x \\
\text { equal } \\
-8 A-3 B \cos 3 x+3 A-8 B \sin 3 x=0 \cos 3 x+2 \sin 3 x . \\
-8 A-3 B=0, \quad 3 A-8 B=2, \\
A=\frac{6}{73} \text { and } B=-\frac{16}{73} \\
y_{p}=\frac{6}{73} \cos 3 x-\frac{16}{73} \sin 3 x
\end{gathered}
$$

EXAMPLE 3

Solve $y^{\prime \prime}-2 y^{\prime}-3 y=4 x-5+6 x e^{2 x}$.

SOLUTION

Step 1 First, the solution of the associated homogeneous equation $y^{\prime \prime}-2 y^{\prime}-3 y=0$ is $y_{c}=c_{1} e^{-x}+c_{2} e^{3 x}$.

Step 2 we also assume that the particular solution is the sum of two basic kinds of functions:

$$
\begin{aligned}
& g(x)=g_{1}(x)+g_{2}(x)=\text { polynomial }+ \text { exponentials. } \\
& y_{p}=y_{p_{1}}+y_{p_{2}},
\end{aligned}
$$

where $y_{p_{1}}=A x+B$ and $y_{p_{2}}=C x e^{2 x}+E e^{2 x}$.

$$
\begin{aligned}
& y_{p}=A x+B+C x e^{2 x}+E e^{2 x} \\
& y_{p}^{\prime \prime}-2 y_{p}^{\prime}-3 y_{p}=-3 A x-2 A-3 B-3 C x e^{2 x}+(2 C-3 E) e^{2 x}=4 x-5+6 x e^{2 x} . \\
& -3 A=4, \quad-2 A-3 B=-5, \quad-3 C=6, \quad 2 C-3 E=0 .
\end{aligned}
$$

Solving, we find $A=-\frac{4}{3}, B=\frac{23}{9}, C=-2$, and $E=-\frac{4}{3}$

$$
y_{p}=-\frac{4}{3} x+\frac{23}{9}-2 x e^{2 x}-\frac{4}{3} e^{2 x} .
$$

Step 3 The general solution of the equation is

$$
y=c_{1} e^{-x}+c_{2} e^{3 x}-\frac{4}{3} x+\frac{23}{9}-\left(2 x+\frac{4}{3}\right) e^{2 x}
$$

EXAMPLE 4 Find a particular solution of $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$.
Solution The equation $m^{2}-6 m+9=(m-3)^{2}=0$
has $m=3$ as a repeated root. Thus,

$$
y_{\mathrm{p}}=A x^{2} e^{3 x}
$$

and we get

$$
\left(9 A x^{2} e^{3 x}+12 A x e^{3 x}+2 A e^{3 x}\right)-6\left(3 A x^{2} e^{3 x}+2 A x e^{3 x}\right)+9 A x^{2} e^{3 x}=e^{3 x}
$$

or $\quad 2 A e^{3 x}=e^{3 x}$.
Thus, $A=1 / 2$, and the particular solution is $\quad y_{\mathrm{p}}=\frac{1}{2} x^{2} e^{3 x}$.

EXAMPLE 5 Find the general solution to $y^{\prime \prime}-y^{\prime}=5 e^{x}-\sin 2 x$.
Solution We first check the equation $r^{2}-r=0$.
Its roots are $r=1$ and $r=0$. Therefore, $\quad y_{\mathrm{c}}=c_{1} e^{x}+c_{2}$.
we choose y_{p} to be the sum $y_{\mathrm{p}}=A x e^{x}+B \cos 2 x+C \sin 2 x$,

$$
\begin{aligned}
& \left(A x e^{x}+2 A e^{x}-4 B \cos 2 x-4 C \sin 2 x\right) \\
- & \left(A x e^{x}+A e^{x}-2 B \sin 2 x+2 C \cos 2 x\right)=5 e^{x}-\sin 2 x
\end{aligned}
$$

or

$$
\begin{aligned}
& A e^{x}-(4 B+2 C) \cos 2 x+(2 B-4 C) \sin 2 x=5 e^{x}-\sin 2 x \\
& A=5, \quad 4 B+2 C=0, \quad 2 B-4 C=-1,
\end{aligned}
$$

or $A=5, B=-1 / 10$, and $C=1 / 5$

$$
y_{\mathrm{p}}=5 x e^{x}-\frac{1}{10} \cos 2 x+\frac{1}{5} \sin 2 x
$$

The general solution is $\quad y=y_{\mathrm{c}}+y_{\mathrm{p}}=c_{1} e^{x}+c_{2}+5 x e^{x}-\frac{1}{10} \cos 2 x+\frac{1}{5} \sin 2 x$.

Exercises 3.4

In Problems 1-26, solve the given differential equation by undetermined coefficients.

1. $y^{\prime \prime}+3 y^{\prime}+2 y=6$
2. $4 y^{\prime \prime}+9 y=15$
3. $y^{\prime \prime}-10 y^{\prime}+25 y=30 x+3$
4. $y^{\prime \prime}+y^{\prime}-6 y=2 x$
5. $\frac{1}{4} y^{\prime \prime}+y^{\prime}+y=x^{2}-2 x$
6. $y^{\prime \prime}-8 y^{\prime}+20 y=100 x^{2}-26 x e^{x}$
7. $y^{\prime \prime}+3 y=-48 x^{2} e^{3 x}$
8. $4 y^{\prime \prime}-4 y^{\prime}-3 y=\cos 2 x$
9. $y^{\prime \prime}-y^{\prime}=-3$
10. $y^{\prime \prime}+2 y^{\prime}=2 x+5-e^{-2 x}$
11. $y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=3+e^{x / 2}$
12. $y^{\prime \prime}-16 y=2 e^{4 x}$
13. $y^{\prime \prime}+4 y=3 \sin 2 x$
14. $y^{\prime \prime}-4 y=\left(x^{2}-3\right) \sin 2 x$
15. $y^{\prime \prime}+y=2 x \sin x$
16. $y^{\prime \prime}-5 y^{\prime}=2 x^{3}-4 x^{2}-x+6$
17. $y^{\prime \prime}-2 y^{\prime}+5 y=e^{x} \cos 2 x$
18. $y^{\prime \prime}-2 y^{\prime}+2 y=e^{2 x}(\cos x-3 \sin x)$
19. $y^{\prime \prime}+2 y^{\prime}+y=\sin x+3 \cos 2 x$
20. $y^{\prime \prime}+2 y^{\prime}-24 y=16-(x+2) e^{4 x}$

In Problems 27-32, solve the given initial-value problem.
27. $y^{\prime \prime}+4 y=-2, \quad y(\pi / 8)=\frac{1}{2}, y^{\prime}(\pi / 8)=2$
28. $2 y^{\prime \prime}+3 y^{\prime}-2 y=14 x^{2}-4 x-11, y(0)=0, y^{\prime}(0)=0$
29. $5 y^{\prime \prime}+y^{\prime}=-6 x, y(0)=0, y^{\prime}(0)=-10$
30. $y^{\prime \prime}+4 y^{\prime}+4 y=(3+x) e^{-2 x}, y(0)=2, y^{\prime}(0)=5$
31. $y^{\prime \prime}+4 y^{\prime}+5 y=35 e^{-4 x}, y(0)=-3, y^{\prime}(0)=1$
32. $y^{\prime \prime}-y=\cosh x, \quad y(0)=2, y^{\prime}(0)=12$

In Problems 37-40, solve the given boundary-value problem.
37. $y^{\prime \prime}+y=x^{2}+1, y(0)=5, y(1)=0$
38. $y^{\prime \prime}-2 y^{\prime}+2 y=2 x-2, y(0)=0, y(\pi)=\pi$
39. $y^{\prime \prime}+3 y=6 x, y(0)=0, y(1)+y^{\prime}(1)=0$
40. $y^{\prime \prime}+3 y=6 x, y(0)+y^{\prime}(0)=0, y(1)=0$

2- Method of Variation of Parameters

This is a general method for finding a particular solution of the nonhomogeneous equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=G(x)
$$

The method consists of replacing the constants c_{1} and c_{2} in the complementary solution by functions $u_{1}=u_{1}(x)$ and $u_{2}=u_{2}(x)$.

To use this method, follow the following steps:

1. Solve the associated homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ to find the functions y_{1} and y_{2}.
2. Solve the equations (see page 137 for complete derivation):

$$
\begin{gathered}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 \\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=G(x) \\
u_{1}^{\prime}=\frac{W_{1}}{W} \text { and } \quad u_{2}^{\prime}=\frac{W_{2}}{W}
\end{gathered}
$$

where

$$
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|, \quad W_{1}=\left|\begin{array}{cc}
0 & y_{2} \\
G(x) & y_{2}^{\prime}
\end{array}\right|, \quad W_{2}=\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & G(x)
\end{array}\right| .
$$

to find the functions $u_{1}{ }^{\prime}$ and $u_{2}{ }^{\prime}$.
3. Integrate $u_{1}{ }^{\prime}$ and $u_{2}{ }^{\prime}$ to find the functions $u_{1}=u_{1}(x)$ and $u_{2}=u_{2}(x)$.
4. Write down the particular solution as $y_{\mathrm{P}}=u_{1} y_{1}+u_{2} y_{2}$.

EXAMPLE 1

Solve $y^{\prime \prime}-4 y^{\prime}+4 y=(x+1) e^{2 x}$.
SOLUTION From equation $m^{2}-4 m+4=(m-2)^{2}=0$ we have $y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}$.
With the identifications $y_{1}=e^{2 x}, \quad y_{2}=x e^{2 x}$ and $G(x)=(x+1) e^{2 x}$

$$
\begin{aligned}
W & =\left|\begin{array}{cc}
e^{2 x} & x e^{2 x} \\
2 e^{2 x} & 2 x e^{2 x}+e^{2 x}
\end{array}\right|=e^{4 x} . \\
W_{1} & =\left|\begin{array}{cc}
0 & x e^{2 x} \\
(x+1) e^{2 x} & 2 x e^{2 x}+e^{2 x}
\end{array}\right|=-(x+1) x e^{4 x}, \\
W_{2} & =\left|\begin{array}{cc}
e^{2 x} & 0 \\
2 e^{2 x} & (x+1) e^{2 x}
\end{array}\right|=(x+1) e^{4 x},
\end{aligned}
$$

and so $\quad u_{1}^{\prime}=-\frac{(x+1) x e^{4 x}}{e^{4 x}}=-x^{2}-x, \quad u_{2}^{\prime}=\frac{(x+1) e^{4 x}}{e^{4 x}}=x+1$

Integrating u_{1}^{\prime} and u_{2} gives

$$
u_{1}=-\frac{1}{3} x^{3}-\frac{1}{2} x^{2} \quad \text { and } \quad u_{2}=\frac{1}{2} x^{2}+x
$$

Hence

$$
y_{p}=\left(-\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right) e^{2 x}+\left(\frac{1}{2} x^{2}+x\right) x e^{2 x}=\frac{1}{6} x^{3} e^{2 x}+\frac{1}{2} x^{2} e^{2 x}
$$

and

$$
y=y_{c}+y_{p}=c_{1} e^{2 x}+c_{2} x e^{2 x}+\frac{1}{6} x^{3} e^{2 x}+\frac{1}{2} x^{2} e^{2 x}
$$

Solve $4 y^{\prime \prime}+36 y=\csc 3 x$.
SOLUTION We first put the equation in the standard form by dividing by 4 :

$$
y^{\prime \prime}+9 y=\frac{1}{4} \csc 3 x .
$$

Since the roots of the equation $m^{2}+9=0$ are $m_{1}=3 i$ and $m_{2}=-3 i$,

$$
y_{c}=c_{1} \cos 3 x+c_{2} \sin 3 x .
$$

Using $y_{1}=\cos 3 x, y_{2}=\sin 3 x$, and $G(x)=\frac{1}{4} \csc 3 x$, we obtain

$$
\begin{aligned}
W & =\left|\begin{array}{cc}
\cos 3 x & \sin 3 x \\
-3 \sin 3 x & 3 \cos 3 x
\end{array}\right|=3, \\
W_{1} & =\left|\begin{array}{cc}
0 & \sin 3 x \\
\frac{1}{4} \csc 3 x & 3 \\
\cos 3 x
\end{array}\right|=-\frac{1}{4}, \\
W_{2} & =\left|\begin{array}{cc}
\cos 3 x & 0 \\
-3 \sin 3 x & \frac{1}{4} \csc 3 x
\end{array}\right|=\frac{1}{4} \frac{\cos 3 x}{\sin 3 x} .
\end{aligned}
$$

Integrating $u_{1}^{\prime}=\frac{W_{1}}{W}=-\frac{1}{12}$ and $u_{2}^{\prime}=\frac{W_{2}}{W}=\frac{1}{12} \frac{\cos 3 x}{\sin 3 x}$
gives $\quad u_{1}=-\frac{1}{12} x$ and $u_{2}=\frac{1}{36} \ln |\sin 3 x|$.
Thus $\quad y_{p}=-\frac{1}{12} x \cos 3 x+\frac{1}{36}(\sin 3 x) \ln |\sin 3 x|$.
The general solution is

$$
y=y_{c}+y_{p}=c_{1} \cos 3 x+c_{2} \sin 3 x-\frac{1}{12} x \cos 3 x+\frac{1}{36}(\sin 3 x) \ln |\sin 3 x| .
$$

In Problems 1-18, solve each differential equation by variation of parameters.

1. $y^{\prime \prime}+y=\sec x$
2. $y^{\prime \prime}+y=\sin x$
3. $y^{\prime \prime}+y=\cos ^{2} x$
4. $y^{\prime \prime}-y=\cosh x$
5. $y^{\prime \prime}-9 y=\frac{9 x}{e^{3 x}}$
6. $y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{1+e^{x}}$
7. $y^{\prime \prime}+3 y^{\prime}+2 y=\sin e^{x}$
8. $y^{\prime \prime}+2 y^{\prime}+y=e^{-t} \ln t$
9. $3 y^{\prime \prime}-6 y^{\prime}+6 y=e^{x} \sec x$
10. $y^{\prime \prime}+y=\tan x$
11. $y^{\prime \prime}+y=\sec \theta \tan \theta$
12. $y^{\prime \prime}+y=\sec ^{2} x$
13. $y^{\prime \prime}-y=\sinh 2 x$
14. $4 y^{\prime \prime}-y=e^{x / 2}+3$
15. $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}}$
16. $y^{\prime \prime}-2 y^{\prime}+y=e^{t} \arctan t$
17. $2 y^{\prime \prime}+y^{\prime}=6 x$
18. $4 y^{\prime \prime}-4 y^{\prime}+y=e^{x / 2} \sqrt{1-x^{2}}$

1.4 Solutions of the Higher-Order D.Es ($n>2$)

1.4.1 Higher-Order Homogeneous Linear DEs

The characteristic equation of the differential equation

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

is
$m^{n}+a_{n-1} m^{n-1}+\cdots+a_{1} m+a_{0}=0$

General Solution for \boldsymbol{n} th-Order Equations:

The general solution of the n th-order DE is obtained directly from the roots of its characteristic equation, as in the following cases:
Case 1 If the roots $m_{1}, m_{2}, \ldots, m_{\mathrm{n}}$ are all real and no two are equal, the solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+\cdots+c_{n} e^{m_{n} x}
$$

Case 2 If m is a real root appearing k times, the solution is

$$
y=e^{m x}\left(c_{1}+c_{2} x+\cdots+c_{k} x^{k-1}\right)
$$

Case 3 If the complex roots are conjugate pairs of complex numbers:

$$
m_{1,2}=\alpha \pm i \beta, m_{1,2}=\gamma \pm i \delta, \ldots
$$

the solution is

$$
y(x)=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right)+e^{\gamma x}\left(C_{3} \cos \delta x+C_{4} \sin \delta x\right)+\cdots
$$

Case 4 If $m=\alpha \pm \beta i$ are complex conjugate roots each appears k times, the solution is

$$
y(x)=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right)+x e^{\alpha x}\left(C_{3} \cos \beta x+C_{4} \sin \beta x\right)+\cdots+x^{k-1} e^{\alpha x}\left(C_{2 k-1} \cos \beta x+C_{2 k} \sin \beta x\right)
$$

EXAMPLE 1

Solve $y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y=0$.
SOLUTION It should be apparent from inspection of $m^{3}+3 m^{2}-4=0$ that one root is $m_{1}=1$ and so $m-1$ is a factor of $m^{3}+3 m^{2}-4$. By division we find

$$
m^{3}+3 m^{2}-4=(m-1)\left(m^{2}+4 m+4\right)=(m-1)(m+2)^{2},
$$

and so the other roots are $m_{2}=m_{3}=-2$. Thus the general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-2 x}+c_{3} x e^{-2 x} .
$$

EXAMPLE 2

Solve $\frac{d^{4} y}{d x^{4}}+2 \frac{d^{2} y}{d x^{2}}+y=0 . \quad$ characteristic
SOLUTION The auxiliary equation $m^{4}+2 m^{2}+1=\left(m^{2}+1\right)^{2}=0$ has roots

$$
m_{1}=m_{3}=i \text { and } m_{2}=m_{4}=-i .
$$

Thus the solution is (with $\alpha=0, \beta=1$ and $k=2$)
$y(x)=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right)+x e^{\alpha x}\left(C_{3} \cos \beta x+C_{4} \sin \beta x\right)$
$y=c_{1} \cos x+c_{2} \sin x+c_{3} x \cos x+c_{4} x \sin x$

EXAMPLE 3

Find the general solution of the differential equation

$$
y^{(4)}-y=0
$$

Solution. The roots of the characteristic polynomial are $m=1,-1, i,-i$. Thus, the general solution of the differential equation is

$$
y(t)=c_{1} e^{t}+c_{2} e^{-t}+c_{3} \cos t+c_{4} \sin t
$$

EXAMPLE 4

Solve the equation $y^{(4)}-y^{\prime \prime \prime}+2 y^{\prime}=0$
Solution: The characteristic equation is

$$
m^{4}-m^{3}+2 m=0
$$

or

$$
\begin{gathered}
m\left(m^{3}-m^{2}+2\right)=0 \\
m(m+1)\left(m^{2}-2 m+2\right)=0
\end{gathered}
$$

The characteristic equation has four distinct roots, two of which are complex:

$$
m_{1}=0, \quad m_{2}=-1, \quad m_{3,4}=1 \pm i
$$

The general solution is $\quad y(x)=C_{1}+C_{2} e^{-x}+e^{x}\left(C_{3} \cos x+C_{4} \sin x\right)$

Exercises 3.3 (page:125)

In Problems 15-24, find the general solution of the given higher-order differential equation.
15. $y^{\prime \prime \prime}-4 y^{\prime \prime}-5 y^{\prime}=0$
16. $y^{\prime \prime \prime}-y=0$
17. $y^{\prime \prime \prime}-5 y^{\prime \prime}+3 y^{\prime}+9 y=0$
18. $y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y^{\prime}-12 y=0$
19. $\frac{d^{3} u}{d t^{3}}+\frac{d^{2} u}{d t^{2}}-2 u=0$
20. $\frac{d^{3} x}{d t^{3}}-\frac{d^{2} x}{d t^{2}}-4 x=0$
21. $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$
22. $y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0$
23. $y^{(4)}+y^{\prime \prime \prime}+y^{\prime \prime}=0$
24. $y^{(4)}-2 y^{\prime \prime}+y=0$

1.4.1 Higher-Order Non-Homogeneous Linear DEs

In this section, we give methods for obtaining a particular solution y_{p} once y_{c} is known.

1- Undetermined Coefficients for Higher-Order DEs

We have already seen how to solve a second-order linear nonhomogeneous DEs with constant coefficients. For higher-order nonhomogeneous differential equation, the exact same method will work.

EXAMPLE

Solve $y^{\prime \prime \prime}+y^{\prime \prime}=e^{x} \cos x$.
SOLUTION From the characteristic equation $m^{3}+m^{2}=0$ we find $m_{1}=m_{2}=0$ and $m_{3}=-1$.
Hence $y_{c}=c_{1}+c_{2} x+c_{3} e^{-x}$.
With $g(x)=e^{x} \cos x$, we assume $y_{p}=A e^{x} \cos x+B e^{x} \sin x$.
From $\quad y_{p}^{\prime \prime \prime}+y_{p}^{\prime \prime}=(-2 A+4 B) e^{x} \cos x+(-4 A-2 B) e^{x} \sin x=e^{x} \cos x$
we get $-2 A+4 B=1,-4 A-2 B=0$.
This system gives $A=-\frac{1}{10}$ and $B=\frac{1}{5}$:
so that $y_{p}=-\frac{1}{10} e^{x} \cos x+\frac{1}{5} e^{x} \sin x$.
The general solution is $y=y_{c}+y_{p}=c_{1}+c_{2} x+c_{3} e^{-x}-\frac{1}{10} e^{x} \cos x+\frac{1}{5} e^{x} \sin x$.

Exercises 3.4 (page:135)

In Problems below, solve the given third-order DEs by undetermined coefficients.
21. $y^{\prime \prime \prime}-6 y^{\prime \prime}=3-\cos x$
22. $y^{\prime \prime \prime}-2 y^{\prime \prime}-4 y^{\prime}+8 y=6 x e^{2 x}$
23. $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=x-4 e^{x}$
24. $y^{\prime \prime \prime}-y^{\prime \prime}-4 y^{\prime}+4 y=5-e^{x}+e^{2 x}$
25. $y^{(4)}+2 y^{\prime \prime}+y=(x-1)^{2}$
26. $y^{(4)}-y^{\prime \prime}=4 x+2 x e^{-x}$

2- Method of Variation of Parameters for Higher-Order DEs

This method will be illustrated here to find the particular solution y_{p}. For the nonhomogeneous second-order differential equation

$$
\begin{aligned}
& y^{(n)}+P_{n-1}(x) y^{(n-1)}+\cdots+P_{1}(x) y^{\prime}+P_{0}(x) y=f(x) \\
& y_{c}=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n} \\
& y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)+\cdots+u_{n}(x) y_{n}(x)
\end{aligned}
$$

where the $u_{k}^{\prime}, k=1,2, \ldots, n$, are determined by the n equations

$$
\begin{array}{ccc}
y_{1} u_{1}^{\prime}+ & y_{2} u_{2}^{\prime}+\cdots+ & y_{n} u_{n}^{\prime}=0 \\
y_{1}^{\prime} u_{1}^{\prime}+ & y_{2}^{\prime} u_{2}^{\prime}+\cdots+ & y_{n}^{\prime} u_{n}^{\prime}=0 \\
\vdots & & \vdots \\
y_{1}^{(n-1)} u_{1}^{\prime}+y_{2}^{(n-1)} u_{2}^{\prime}+\cdots+y_{n}^{(n-1)} u_{n}^{\prime}= & f(x)
\end{array}
$$

When $n=3, y_{\mathrm{p}}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}$, where y_{1}, y_{2}, and y_{3} are set of solutions of the associated homogeneous DE , and u_{1}, u_{2}, u_{3} are determined from
$u_{1}^{\prime}=\frac{W_{1}}{W}, \quad u_{2}^{\prime}=\frac{W_{2}}{W}, \quad u_{3}^{\prime}=\frac{W_{3}}{W}$
$W=\left|\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right|, W_{1}=\left|\begin{array}{ccc}0 & y_{2} & y_{3} \\ 0 & y_{2}^{\prime} & y_{3}^{\prime} \\ f(x) & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right|, W_{2}=\left|\begin{array}{ccc}y_{1} & 0 & y_{3} \\ y_{1}^{\prime} & 0 & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & f(x) & y_{3}^{\prime \prime}\end{array}\right|$, and $W_{3}=\left|\begin{array}{ccc}y_{1} & y_{2} & 0 \\ y_{1}^{\prime} & y_{2}^{\prime} & 0 \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & f(x)\end{array}\right|$

Exercises 3.5 (page:140)

In Problems 29 and 30, solve the given third-order DEs by variation of parameters.
29. $y^{\prime \prime \prime}+y^{\prime}=\tan t$
30. $y^{\prime \prime \prime}+4 y^{\prime}=\sec 2 x$

Solution of Problem 29:

For $y^{\prime \prime \prime}+y^{\prime}=0$ we have $m^{3}+m=0$
then $r\left(r^{2}+1\right)=0$ and so $r=0$ or $r= \pm i$
therefore $y_{c}=C_{1}+C_{2} \cos t+C_{3} \sin t$
Furthermore, $y_{1}=e^{0 t}=1, y_{2}=e^{0 t} \cos t=\cos t$, and $y_{3}=e^{0 t} \sin t=\sin t$
We have that: $y_{p}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}$

$$
y_{p}=u_{1}+u_{2} \cos t+u_{3} \sin t
$$

Thus we want to solve the following system of equations:

$$
\begin{array}{r}
u_{1}^{\prime}(1)+u_{2}^{\prime} \cos t+u_{3}^{\prime} \sin t=0 \\
u_{1}^{\prime}(0)+u_{2}^{\prime}(-\sin t)+u_{3}^{\prime}(\cos t)=0 \\
u_{1}^{\prime}(0)+u_{2}^{\prime}(\cos t)+u_{3}^{\prime}(\sin t)=\tan t
\end{array}
$$

Now we have that:

$$
\begin{aligned}
& W=\left[\begin{array}{ccc}
1 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
0 & -\cos t & -\sin t
\end{array}\right]=\left[\begin{array}{cc}
-\sin t & \cos t \\
-\cos t & -\sin t
\end{array}\right]=1 \\
& u_{1}^{\prime}=\frac{\left[\begin{array}{ccc}
0 & \cos t & \sin t \\
0 & -\sin t & \cos t \\
\tan t & -\cos t & -\sin t
\end{array}\right]}{1}=\tan t\left[\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]=\tan t \\
& u_{2}^{\prime}=\frac{\left[\begin{array}{ccc}
1 & 0 & \sin t \\
0 & 0 & \cos t \\
0 & \tan t & -\sin t
\end{array}\right]}{2}=-\left[\begin{array}{ccc}
1 & 0 & \sin t \\
0 & \tan t & -\sin t \\
0 & 0 & \cos t
\end{array}\right]=-\tan t \cos t=-\sin t \\
& u_{3}^{\prime}=\frac{\left[\begin{array}{ccc}
1 & \cos t & 0 \\
0 & -\sin t & 0 \\
0 & -\cos t & \tan t
\end{array}\right]}{1}=\left[\begin{array}{ccc}
-\sin t & 0 \\
-\cos t & \tan t
\end{array}\right]=-\sin t \tan t=-\frac{\sin 2}{\cos t}
\end{aligned}
$$

We will now integrate $u_{1}^{\prime}, u_{2}^{\prime}$, and u_{3}^{\prime} to get:

$$
\begin{aligned}
\int u_{1}^{\prime}(t) d t & =\int \tan t d t=\ln |\sec t|+C \\
\int u_{2}^{\prime}(t) d t & =\int-\sin t d t=\cos t+D \\
\int u_{3}^{\prime}(t) d t & =\int-\frac{\sin ^{2} t}{\cos t} d t=\int \frac{\cos ^{2} t-1}{\cos t} d t=\int(\cos t-\sec t) d t \\
& =\sin t+\ln |\sec t+\tan t|+E
\end{aligned}
$$

Thus we have that:

$$
y(t)=(\ln |\sec t|+C)(1)+(\cos t+D) \cos t+(\sin t+\ln |\sec t+\tan t|+E) \sin t
$$

[^0]: Exercises 2.3 (page 57): Solve exercises 1 to 32.

