Unit One: Differential Equations

(Reference: Advanced Engineering Mathematics, by Dennis G. Zill, 6" edition, 2018.)

1.1 Basic Definitions and Concepts:

An equation containing the derivatives of one or more dependent variables, with respect
to one or more independent variables, is said to be a differential equation (DE). The
derivative dy/dx of a function y =¢(x) is itself another function ¢'(x) found by an

appropriate rule.

Ordinary Differential Equation (ODE) is a differential equation contains only
ordinary derivatives of one or more functions with respect to a single independent

variable.

Partial Differential Equation (PDE) is an equation contains only partial derivatives of

one or more functions of two or more independent variables.

The order of a differential equation is the order of the highest derivative appearing in
the equation.
The degree of a differential equation is defined as the power to which the highest order

derivative is raised.

Notation

The eXpI‘eSSIOHS y’,y”,y”’,y(dﬂ ’’’’’ y(n)

are often used to represent, respectively, the first,
second, third, fourth, . . ., nth derivatives of y with respect to the independent variable
under consideration.

If the independent variable is time, usually denoted by t, primes are often replaced by

dots. Thus, y, y,andy represent dy/dr, d*y/di*, and d’y/dr’ , respectively.



Examples: 1) —+6y=¢e*
dx il
d?y dy
2 : — =12y =0
@ dx? dx ¥

3)

(4) Uy = Uy — Uy

d? dy\?
B) —= 4 5(—‘) — 4y = ¢

PyY L (dvY L (dy)
) [d—] (5] (%) =
We can express the nth-order ordinary differential equation in one dependent variable
by the general form

F(x,y,y’,...,y(”)) =0

or by the normal form

d"y _
— = f,y, Y e,y
dx
EXAMPLE Normal Form of an ODE
dy .ody x—y
- 4+ — R
(a) dx I y=x is I I
(b) yu _ yl 4 6y — 0 is yu — y/ _ 6y

Linearity: An nth-order ordinary differential equation is said to be linear in the
variable y if F is linear in y, y', ..., y".

A nonlinear ordinary differential equation is simply one that is not linear.

Standard and Differential Forms
Standard form for a first-order differential equation in the unknown function y(x) is
y'=fxy)
while the differential form is
M(x, y) dx + N(x,y) dy =0



EXAMPLE Linear and Nonlinear Differential Equations
(a) The equations

d’ d
(y —x)dx + 4xdy =0, y" =2y +y=0, x3—)3)+3x—y—5y=e"
dx dx

are, in turn, examples of /inear first-, second-, and third-order ordinary differential equations.

(b) The equations

nonlinear term: nonlinear term: nonlinear term:
coefficient depends on y nonlinear function of y power not 1
\ \ \
2 4
Yo dy .
(I —yy' + 2y = ¢, + siny = 0, +y =0,
Yy Y dx? Y Ao Y

are examples of nonlinear first-, second-, and fourth-order ordinary differential equations, respectively.

A solution of a differential equation in the unknown function y and the independent
variable x on the interval | is a function y(x) that satisfies the differential equation
identically for all x in 1.

Note: A particular solution of a differential equation is any one solution.
The general solution of a differential equation is the set of all solutions.

EXAMPLE Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on the interval
(—o0, 00).

dy
@ =%y =gt (b)y" =2y +y=0; y=xe

SOLUTION One way of verifying that the given function is a solution is to see, after substi-
tuting, whether each side of the equation is the same for every x.

d 3 3

(a) From  left-hand side: dfc - 4.’1‘6 _ ,;
4N\ 1/2 2 3
right-hand side: xy'? = x- (%) _ x_xI _ xZ

we see that each side of the equation is the same for every real number x. Note that y"* = Jx* is,
by definition, the nonnegative square root of 7z x*.



(b) From the derivatives y’ = xe* + ¢* and y” = xe* + 2¢* we have for every real number x,

left-hand side: ¥y' — 2y" + y = (xe* + 2¢") — 2(xe" + €') + x¢* =0
right-hand side: 0. =

Note, too, that each differential equation possesses the constant solution y = 0. A solution of a
differential equation that is identically zero on an interval / is said to be a trivial solution.

Initial-Value and Boundary-Value Problems

A differential equation along with conditions on the unknown function and its

derivatives, all given at the same value of the independent variable, constitutes an initial-

value problem (IVVP). These conditions are initial conditions. If the conditions are given

at more than one value of the independent variable, the problem is a boundary-value

problem (BVP) and the conditions are boundary conditions.
Typically, initial value problems involve time dependent functions, while boundary
value problems are spatial.

Example: The problem y”+2y"=¢";y(x)=1,y’(7x) =2 is an initial value problem,
because the two subsidiary conditions are both given at x =7 .

The problem y”+2y"=¢*;y(0)=1,y(1)=1 is a boundary-value problem,
because the two subsidiary conditions are given at x = 0 and x= 1.

1.2 Solutions of the First Order D.Es

1.2.1 Separable D.Es
A first-order differential equation of the form
dy
iR ACLI6)
is said to be separable or to have separable variables. For example, the differential
equations

dy y

_ 2.4 _5x—3y _

— = xy'e Y and — =y + cosx
dx Y dx Y

are separable and nonseparable, respectively. To see this, note that we can factor the
first equation as

fly) = e = (e (e ™)

but in the second there is no way writing y + cos x as a product of a function of x times
a function of y.



EXAMPLE 1

Solve (1 +x)dy —ydx=0.

SOLUTION Dividing by (1 + x)y, we can write dy/y = dx/(1 + x), from which it follows that

[7-1
y_ 1+ x

Inlyl = Inll + x| + ¢
lyl = elnltHata = philtad. po « laws of exponents
1T +xl=1+x x=—1
= + Cy 5
1 e <_{|1+x|=—(l+x), < -1
and so y = el + x).

Relabeling *e by ¢ then gives y = ¢(1 + x).

EXAMPLE 2 Solution Curve

d
Solve the initial-value problem a’7y = —;, v(4) = —3.
by
SOLUTION By rewriting the equation as y dy = —x dx we get
y? X2
vdy = —|xdx and ?= —?+cl.

We can write the result of the integration as x* + y* = ¢ by replacing the constant 2¢, by .

Now when x = 4,y = =3, so that 16 + 9 =25 = ¢’. Thus x* + 3> =25.

EXAMPLE 3

Solve the initial-value problem

cos x(e® — y) ﬁ = ¢’ sin2x, y(0) = 0.

SOLUTION Dividing the equation by e cos x gives

2y .
e y sin 2x
dy = dx.
e’ Y CcOS X

J'(ey —ye )dy = ZJ sinxdx
yields e’ +ye? + e = —2cosx + c.

The initial condition y = 0 when x = 0 implies ¢ = 4. Thus a solution of the initial-value
problem is

e +ye P + eV =4 — 2cosx.

Exercises 2.2 (page 48): Solve exercises 1 to 27.




1.2.2 Exact Equations
The first order ODE
M(x, y)dx + N(x, y)dy = 0
Is said to be exact if a function f (X, y) exists such that the total differential

of of
dlf(x,y)] = &dx + @dy = M(x,y)dx + N(x,y)dy

or M(x,y) = df/ dx and N(x,y) = 0f/ dy

It follows directly that if
M(x, y)dx + N(x, y)dy =0
IS exact, then the total differential
d [f(x, y)] =0,
so the general solution of must be
f(x, y) = constant.

Condition of Exactness: M(X, y) dx + N(x, y) dy is an exact differential if and
only if

oM _ ON
dy  ox
Steps for Solving an Equation You Know to Be Exact:
1- Match the equation to the form

df = (%) dx + (%) dy
to identify df /0x and df /0y .
Integrate df /dx with respect to x, writing the constant of integration as k(y).
Differentiate with respect to y and set the result equal to af /dy to find k'(y).

Integrate to find k(y) and determine f(x, y).
Write the solution of the exact equation as f(x,y) = C.

T



m Solving an Exact DE

Solve 2xydx + (x* — 1)dy = 0.
SOLUTION With M(x, y) = 2xy and N(x, y) = x> — 1 we have

oM oN
— =2x=—
ay 0x

Thus the equation is exact, and so,

dJ 0
—f=2xy and —f=x2—1.
dy

From the first of these equations we obtain, after integrating,

fx,y) =y + g(y).

=x>+g'y) =x>—1. «<Nxy

KA
d
It follows that g'(y) = —1 and g(y) = —v.

Hence, f(x, y) = x>y — y, and so the solution of the equation is x’y —y = ¢
q

Example (2): Show that the following equation is exact and find its general solution:
{3x2 + 2y + 2 cosh(2x + 3y)}dx + {2x + 2y + 3 cosh(2x + 3y)}dy =0
Solution:

M(X, y) = 3x2 + 2y + 2 cosh(2x + 3y),
and  N(x,y) =2x + 2y + 3 cosh(2x + 3y),
then My =2+ 6 sinh(2x + 3y)
and  Ny=2+ 6sinh(2x + 3y)

so, as My = Ny the equation is exact:

flx,y) = jM(x,y)dx = j{3x2 + 2y + 2 cosh(2x + 3y)}dx

= X3 + 2xy + sinh(2x + 3y) + k(y)

0
% = 2x + 3 cosh(2x + 3y) +k'(y) =N = 2x + 2y + 3 cosh(2x + 3y)

or k'(y) = 2y and then

k() =f2ydy= y?



so f(x, y) =x3+ 2xy + y? + sinh(2x + 3y)
and the general solution is X3 + 2xy + y? + sinh(2x + 3y) = C
(Do you know another method to find k(y) ?)

To learn more about the exact equations, see examples 2 and 3 in pages 61 and 62.

1.2.3 Integrating Factors

It can be shown that every nonexact differential equation M(x, y)dx + N(x, y)dy =0 can
be made exact by multiplying both sides by a suitable factor called integrating factor

u(X,y).

e If (My—Ny)/N is a function of x alone, then

M, — Ny
pe) = e

e If (Nx— My)/M is a function of y alone, then

Ny—M
u) = e/ W

As an example, the equation
2y dx+ x dy=0
Is not exact, while the equation

2xy dx+ x2 dy =0
obtained by multiplying both sides by x, is exact.



A Nonexact DE Made Exact

The nonlinear first-order differential equation xy dx + (2x* + 3y* — 20) dy = 0 is not exact.
With the identifications M = xy, N = 2x* + 3y* — 20 we find M; = x and N, = 4x.

M, — N, B x — 4dx B —3x
N 2x% 4+ 3y7 =20 2x% + 3y* — 20

depends on x and y.

NY_M\‘_4JC_.X’

3x
M xy Xy

= E depends only on y:
y

3

"% s , 3
[3dyly — 63111_\ — eln_\ =y

The integrating factor is then e
and the resulting equation is xy*dx + (2x*y* + 3y° — 20y*) dy = 0.

(verify that the last equation is now exact, and the solution is Lyt + 398 — 5yt = ¢).

Exercises 2.4 (page 64): Solve exercises 1 to 36.

1.2.4 Linear First Order Equations
A first-order linear differential equation has the form

VHEpPX)Y=9(X) (1)
An integrating factor for equation (1) is
p(x) = efr@ax (2)

and the general solution of equation (1) is
1

y = Ef,u(x)q(x)dx .......................... (3)

Note: When q(x) = 0, the linear equation (1) is said to be homogeneous; otherwise, it

is nonhomogeneous.

Steps for solving a linear first order equation:
1- Put it in standard form, as in equation (1).
2- Find the integrating factor from equation (2).
3- Use equation (3) to find y.



Example 1: Solve xy'— 3y =x2
Solution: By dividing both sides on X, the equation can be writtenas y'— (3/x)y =X

So it is linear, with p(x)= —3/x and q(x)=x.

3
JP(X)dx=J—; dx = —-3lnx

1
_ dx — ,-31 _
‘u(x)_efp(x)x_e3nx_;
—1f()()d—1j1d—3(1+c)—63 2
y_,u(x) pe)q(dx == | 5 xdx=x" (- =Cx>—x

x3
The solutionis y = Cx3 — x2.

Remark:
Occasionally a first-order differential equation is not linear in one variable but is linear

in the other variable. For example, the differential equation

dy 1
dx x+y?
Is not linear in the variable y. But its reciprocal
ax _ 2 ax _ . — 2
o x+ys or o X=y

is recognized as linear in the variable x. You should verify that the integrating factor
p(y) = el Py = oJ(-Ddy — o~y
and integration by parts yield an implicit solution of the given equation:

x= —y2—2y—2+ce’.

Exercises 2.3 (page 57): Solve exercises 1 to 32.

10



1.2.5 Homogeneous D.Es
A function f (x, y) is said to be homogeneous of degree n, if f (tx, ty) =t " f (x, y) for
some real number n.

Examples
(a) If f(x,y) = x* + 3xy + 4y2, then f(tx,ty) = l‘z(x2 +3xy+ 4y2) = tzf(x, v),
so f(x, y)is homogeneous of degree 2.

() If f(x,y)=In|y|—In|x| for (x,y)#(0,0), then f(x,y)=In|y/x|, so
f(tx,ty) = f(x,y),showing that f(x, y) is homogeneous of degree 0.

(c¢) If

X2 4 x12y 4 33302
flx.y) = 2x3/2 — xyl/2 7 then f(rx, 1y) = 1" f(x. y),

showing that f(x, y) is homogeneous of degree 0.

(d) If f(x,y)=x*+4y* +sin(x/y), then f(tx,ty) = t*(x* + 4y*) +sin(x/y),

so f(x, y)is not homogeneous.

(e) If f(x,y)=tan(xy+1), then f(tx,ty)=tan(t>xy+1), so f(x,y) is not
homogeneous.

In addition, the first order ODE in differential form
P(X, y)dx + Q(x, y)dy =0

Is called homogeneous if P and Q are homogeneous functions of the same degree or,
equivalently, if when written in the form

dy

- =hxy)
the homogeneous function h(x, y) can be written as h(x, y) = F(y/x). We can change this
equation into a separable equation by the substitution y=vx, then:

dy _ 4 _ av _
dx—dx(vx)—v+xdx—F(v)

which can be rearranged to give

dx dv

+

X v—F(v)=0

11



Example 1: Show that the equation
dy — x*+y?

dx 2xy
Is homogeneous and find the solution that satisfies the condition y(1)=1.
Solution:

y

dy _ _1+Q°
dx 2(%)

1+v2
F(v) =— - where v=y/x
dx dv dx 2v dv
— + 5 =0 o —+ S =
X v+1+v X 1+3v

2v

The solution of this equation is
In|x| +3In(1+3v?) = C
or x3(1+ 3v?%) = +e3¢ = (,
we substitute v=y/x to find the corresponding xy-equation:
3 y?
x>(1+ 3x—2) =(
or x3+3xy?=¢(
(13+3(1)(1)?>)=C, orC, =4

The solution is x3 + 3xy? = 4

1.2.6 Bernoulli’s Equation
The Bernoulli equation is a nonlinear first order DE with the standard form

dy p B n
R )y =QMXx)y

1- When n = 0 the equation is First Order Linear DE.

2- When n = 1 the equation can be solved using Separation of Variables.
3- For other values of n the equation cannot be solved by separation of variables or
linearity or homogeneity, but we can solve it by substituting
u=ylm

and turning it into a linear differential equation (and then solve that).

12



and thus, the Bernoulli equation becomes

W 1 Peu=(
a"‘( —n)P(x)u = (1 -n)Q(x)

(Prove that !)
Taking an integrating factor as

u(x) = ef(l—n) P(x) dx
then the general solution of Bernoulli equation is

u=—[(1-n)ux) Q(x)dx

TCS)

Solving a Bernoulli DE

d
Solve x—y + vy = xy%
dx

SOLUTION

dy 1
i ATE N
de | x y =Xy
With n = 2, we next substitute y = ', P(x)=1/x, and Q(x)=x into equation
d
—+ (1= P = (1 - Q@

and simplify, the result is

du 1
— — —u=—x
dx X
-1
The integrating factor is ~ p(x) = ed i = pnx — Slnxm — -l

u=xljf(1—2)x_1xdx =—x[dx=—x(x+C)

u=-—-x%—-=Cx

But u=y/, then y = —1/(x? + Cx)

13



Exercises 2.5 (page 68): Solve exercises 1 to 22.

Additional Exercises: Solve the following DEs:

DE’s Answers
dy 1 2 1 x? C
2. zll—y-yg 2 L —2(C -2,
r oz
d 1 T
3. £+§y=e:’:y4 y—lgze(C—Sx),
d 2 _ 1
4. :Ud_y _|_y — :L-ys y - 21+G$2 )
T
d 2 .
9. %—l—;y:—xQCOSI-yQ %:xz(SIH:IJ-}-C),
dy (4x + 5)2 _
6. 2£+tanxy:w 3 y_lzzm(zlm_"g')g"‘
dy _ 2.2 1
7. gjd—+y—ya: In z = C+az(l-Inz),
T
dy 3 2 sin? x
8. —= = ycotz + y’cosecr Y= ot

dx

14
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1.3 Solutions of the Second-Order D.Es
1.3.1 Second-Order DE Reducible to First Order

A second order DE has the general form
Fr,y, », y") =0
Equation above is called reducible second order DE if either the dependent variable y
or the independent variable x is missing in it.
Case | : F(x, y’, y'") = 0 (Dependent variable y missing)

The substitution p =y’ = % , Yy = Z—Z results in F(x, p, p') = 0.

Case Il : F(y, y", ¥") = 0 (Independent variable x missing)

dy no__ d_p d_y — d_p i ar =
The substitution p = y’ =, Y = D ax P results in F(y, p,pdy) 0.
Example 1: Solve the equation xy'' + 2y'= 6x.
Solution: Letp =y’ =— and y" Z—z , then

xp'+ 2p= 6X
or  p'+2xp=6, which isa linear first order equation.

ﬂ'(ff:) — ef_%d.r _ 2z _ o (x?) _ 2

1 C;
'p—x2 6x2 dx—2x+—

Cy C,
y = f<2x+ )dx— x% — ?+ C,
Example 2: Solve the equation yy" = (y)>.
Solution: dv
1 1
f(]? ﬁ — lnp=hy+hl, =— p=C=Cuy.
Si 2. we hav
ince p= ——, we have

/ 1 '
—=Cy = /ﬂ 2/01(1.’1: = Iny=Ciz+InCs,
' Y

so that the general solution is y(x) = Cye™".

15



Example 3: Solve the equation yy ""+(y' )=

Solution:
yy''+(y')=0
=1 i d =1 re
p v ’ pd}'
ap. 2 a_-1
) p;+p =0 = dyy p
ldp:—_l y — fldeIid}' = Ilnp=—Iny+C
p y p : 4
c_ -1 _C -
p=e y — D= e C-}'p

V

c:y% —  ydy=Cd => [yav=[Cax

L=cx+D => |y’=Cx+D

2
Example 4: Solve the equation % +y=0.

Solution: Letp = Z—i , Yy = pz_f]

pZ—Z+y=O or pdp+ydy=20

2 2 2
EyL=c, letc=2
2 2 2

p?_ ¥y _cf ay — 2
then2+2— - p=——=%JC—y
d
Y = +dx
+C —y?

sin~?! Cl = +(x+C,) or y= C;sin[t(x+ C,)] = *C;sin(x + C,)
1

y = C;sin(x + C,)  (Since C; is arbitrary, there is no need for + sign)

16



Exercises: Find general solutions of the following reducible second order differential
equations.

a) vy =y b) yy” + (/)" =0
¢) vy’ +y = 4w d) y" = (y')°

e) %y + 3ay' =2 £y + () =y
g)y = (x+y) h) " =2y (y)’

D) y’y" =1 Dy =2y

k) yy" = 3(y)* D) y"+4y =0

1.3.2 Homogeneous Linear Equations with Constant Coefficients
A linear nth-order differential equation of the form

d"y d" '_\'
+ a, (x)

dy
a,(x) — —T t T ax) -+ ax)y =0
dx dx

dx

Is said to be homogeneous, whereas an equation

d"y d" 1y dy
-+ a,_(x) Pt a(x) —— + oagx)y = g)
dx dx” dx

a,(x)

with g(x) not identically zero is said to be nonhomogeneous.

If yi(X) and y»(x) are two solutions to the linear homogeneous equation, then for any

constants ¢ and ¢y, the function y(x) = cyi(x) + c2y2(x) is also a solution.

Differential Operator

Differentiation is often denoted by the capital letter D; that is
dy _
dx

The symbol D is called a differential operator.

Examples: D(cos 4x)= — 4 sin 4x, D(5x®— 6x%)= 15 x® — 12x

Dy

17



The Characteristic Equation

Consider the special case of linear second order DE with constant coefficients:

If we try a solution of the form y=e™ then

am’e™ + bme™ + ce"™ =0 or €™ (am*+bm+c)=0
Since e™ is never zero for real values of x, then

am* +bm+c=0
This last equation is called the characteristic equation. There will be three forms of the
general solution corresponding to the type of the roots m; and m;.
Case | : Distinct Real Roots

If m; and m, are unequal real roots, the general solution is:

nyX

y=ce" + e

Case Il : Repeated Real Roots
When m; and m; are equal real roots (m;=m,) the general solution is:

mx mx

y=ce"" + cxe

Case I11 : Conjugate Complex Roots
If m; and m, are complex, or m;= a+iff and my,= a—if, the general solution is

y = c,e™ cos Bx + c,e™ sin Bx = e*(c; cos Bx + ¢, sin Bx)

DETYTE  Second-Order DEs

Solve the following differential equations.
(@ 2y" =5y =3y=0 (b) Yy =10y +25y=0 (¢) YV'+4'  +7y=0

SOLUTION We give the auxiliary equations, the roots, and the corresponding general solutions.
(@) 2m*> —5m —3=02m+ 1)(m — 3), m, = —%, m, = 3.

y =ce? + e
(b) m* — 10m + 25 = (m — 5)°, m; = m, = 5.
y = ¢, + cxe™.
© m+4m+7=0,m =—-2+ \V3i,m=—2—\V3i. We have a = —2, and B = V3.

y = e *(c;cos V3x + ¢,5in'V3x).
18



EXAMPLE 2 An Initial-Value Problem

Solve the initial-value problem 4y” + 4y’ + 17y =0, y(0) = —1, y'(0) = 2.
SOLUTION 4m*+4m+17 =0
m,=—3+2iandm, = —3 — 2i.
y = e **(c; cos 2x + ¢, sin 2x)
Applying the condition y(0) = —1, ¢%c; cos 0 + ¢, sin0) = —1
we see that ¢; = —1.

Differentiating y = ™

(—cos 2x + ¢, sin 2x) and then using y'(0) = 2 gives
2¢c, + 5 =2o0rc, = 3.

Hence the solution is y = ¢ ?(—cos 2x + 3sin 2x)

REMARKS:

(1) Characteristic equations are only defined for linear homogeneous differential
equations with constant coefficients.

(2) The method of this section also works for homogeneous linear first-order

differential equations ay’ + by = 0 with constant coefficients.

Exercises 3.3 (page 125): Solve exercises 1 to 14, and exercises 29 to 34.

19



1.3.2 Non-Homogeneous Linear Equations with Constant Coefficients

The general solution y = y(x) to the nonhomogeneous differential equation
ay" + by" + cy = G(x), (1)
has the form y = y. + yp,

where the complementary solution y. = ¢1y1 + ¢2)2 is the general solution to the

associated homogeneous equation

ay" + by' + cy = 0. (2)

and y,, is any particular solution to the nonhomogeneous equation (1).

1- Method of Undetermined Coefficients

The method of undetermined coefficients for selected equations of the form
ay" + by' + cy = G(x).

If G(x) has a term Then include this

that is a constant expression in the

multiple of ... And if trial function for y,.
e’ r is not a root of Ae™

the auxiliary equation

r 1s a single root of the Axe™
auxiliary equation
r is a double root of the Ax%e™

auxiliary equation

sin kx, cos kx ki is not a root of Bcoskx + Csinkx
the auxiliary equation
a A
ke 0 is not a root of the Bx+C
auxiliary equation
dx* +ex + f Dx*+ Ex + F
0 is a single root of the Dx? + Ex* + Fx
dx’ +ex +f auxiliary equation
0 is a double root of the Dx* + Ex3 + Fx?

auxiliary equation

20



EXAMPLE 1

Solve y" + 4y’ —2y = 2x* — 3x + 6.
SOLUTION

Step 1 We first solve the associated homogeneous equation y” + 4y’ —2y = 0.
m+4m—-2=0
m, = -2 - \/gandmz = =2+ V’g.

y, = Cle—(2+\f6)x (—2+V6)x
c

+ €
Step 2 assume y,=Ax>+ Bx + C.

yp =2Ax + Band y, = 2A

Yy + 4y, — 2y, = 2A + 8Ax + 4B — 2Ax* — 2Bx — 2C

=2x>—3x+6.
equal
2A | x*+ |8A-2B| x+|2A+4B-2C | =2x2-3x +6.

—2A=2, 8A—-2B=-3, 2A+4B-—-2C=6.

Solving this system of equations leads to the values A = —1, B = —3, and C = —9.
5 D
Thus y, = —x" — Ex —9,

Step 3 The general solution is

. d
y=y.ty = c,e"‘“\/g"‘ + cze(‘”\/g”" - x2 - Pl 9.
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EXAMPLE 2

Find a particular solution of y”" —y" + y = 2 sin 3x.

SOLUTION
Y, = A cos 3x + B sin 3x.

Y, — ¥p + ¥, =(—8A — 3B) cos 3x + (3A — 8B) sin 3x = 2 sin 3x

equal

|

—8A —3B| cos 3x + |3A — 8B sin 3x =0 cos 3x + 2 sin 3x.

—8A—-3B=0, 3A-8B=2,

A=%andB= -1
6 16
Y = ECOS 3x— ﬁsin3x

EXAMPLE 3

Solve y" —2y'—3y=4x— 5 + 6xe”.
SOLUTION

Step 1 First, the solution of the associated homogeneous equation y” — 2y’ -3y =0

: — X 3
is y.=ce "+ ce.

Step 2 we also assume that the particular solution is the sum of two basic kinds of functions:

g(x) = g,(x) + g,(x) = polynomial + exponentials.

Yo = Yo, F Yoy

where y, = Ax + Bandy, = Cxe™ + Ee™.

B =gkl Cxe™ + Ee**
¥ = 2y, = 3y, = —34x— 24 = JB— 3Cxe” + (2C — 3E)e* = 4x — 5 + 6xe™.

—3A=4, -2A-3B=-5, -3C=6, 2C-3E=0.

Solving, we find A = —3,B=%,C= —2,and E = —3
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4 23 4
Yp = —gx+ - 2xe™ — — ™.

3 9 3

Step 3 The general solution of the equation is

4 23 4
y = ce " + ce™ — gx + ? - (Zx + g)el‘.

EXAMPLE 4  Find a particular solution of y” — 6y’ + 9y = ™",

Solution The equation m? — 6m+ 9 = (m— 3)> =0

hasm = 3 as a repeated root. Thus,
Vp = AxZe
and we get
(94x%e™ + 124xe™ + 24e*) — 6(34x%e™ + 24xe™) + 94x%e™ = >
or 24e% = e,

1 .
Thus, A = 1/2, and the particular solutionis  Vp = Exzeh-

EXAMPLE 5  Find the general solution to y” — y" = Se* — sin 2x.

Solution We first check the equation 2 — » = (.

Its roots are » = 1 and r = 0. Therefore, y. = cie* + c».

7

we choose Vp to be the sum  y, = Axe* + B cos 2x + Csin 2x,

(Axe* + 24e* — 4B cos 2x — 4C sin 2x)
— (Axe* + Ae* — 2B sin 2x + 2C cos 2x) = Se* — sin 2x
or
Ae* — (4B + 2C) cos 2x + (2B — 4C) sin 2x = Se* — sin 2x
A=25, 4B + 2C = 0, 2B — 4C = -1,

ord=5B=—1/10,and C = 1/5

Yp = Sxe* — 11—0 cos 2x + %sin 2x
The general solution is y =y, + y, = cje* + ¢; + Sxe* — %cos 2% + %sin 2x.
I- 19
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Exercises 3.4

In Problems 1-26, solve the given differential equation by undetermined coefficients.
1. yV"+3y +2y=6

49"+ 9y =15

y' =10y + 25y =30x + 3

Yty -6y =2x

Y hy=x -2

y" — 8y’ + 20y = 100x*> — 26xé"

7. V' + 3y = —48x%¢™

™ o s W N

8. 4y" — 4y’ -3y =cos 2x
0. )~y = =3
10. y/ +2y =2x+5—¢ ™
Ny —y +iy=3+¢&”"
12y — 16y = 2¢*
13. ¥ + 4y = 3sin 2x
14. y' —4y = (x* — 3) sin 2x
15. y" + y = 2xsinx
16, ' =5y =20 — 4 —x + 6
17. y" —2y" + 5y = €' cos 2x
18. ' —2y' + 2y = ¢**(cos x — 3 sin x)
19. y" + 2y" + y =sinx + 3 cos 2x
20. y' + 2y —24y =16 — (x + 2)e*

In Problems 27-32, solve the given initial-value problem.

21. ' + 4y = =2, y(@/8) = 3, y'(w/8) = 2
28. 2y + 3y —2y=14x> —4x — 11, ¥(0) = 0,y'(0) =0

29. 5" +y' = —6x,y(0) =0, ¥y'(0)=—10

30. V' +4y +4y=0C+x)e*, y0)=2,y0)=35
3. ' + 4y + 5y =35, y(0)=-3,y'(0) =1
32. V' —y=coshx, y0)=2,y(0)=12

In Problems 37—40, solve the given boundary-value problem.
3 Y +y=x+1,y0)=5y1)=0

38 V' =2y +2y=2x—2, ¥0)=0,¥(m) =7

39. y' +3y=6x v(0)=0,y(1) +y'(1)=0

40. y" + 3y = 6x, y(0) + y'(0)=0,y(1) =0
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2- Method of Variation of Parameters
This is a general method for finding a particular solution of the nonhomogeneous
equation
ay” + by + cy = G(x)
The method consists of replacing the constants ¢, and ¢, in the complementary solution

by functions u; = u; (X) and u, = u (X).

To use this method, follow the following steps:
1. Solve the associated homogeneous equation ay” + by' + ¢y = 0
to find the functions y; and ys.
2. Solve the equations (see page 137 for complete derivation):
Yiug + yup; =0

yiug + you; = G(x)

, _ Wi , W
u, = — and wu, =
14 %4
0 0
where W = yl, y2, W, = yz, W, = yl, :
Yio » G(x) Y2 i G(x)

to find the functions u;' and u;'.
3. Integrate u;' and uy' to find the functions u;= uy(x) and u,= uy(X).

4. Write down the particular solution as yp = Uy y1+ Uz Y-
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EXAMPLE 1

Solve y" —4y' + 4y = (x + 1)e*.
SOLUTION From equationm® — 4m + 4 = (m — 2)* = Owehave y, = ;™ + cxe™.

With the identifications y, = ¢**, y, = xe¢™* and G(x) = (x + 1)e**

e e2x erx e
2eF  2xe™ + ¥ €
0 X
W, = = —(x + xe*,
; (x + De® 2xe™ + ¥ ( )
24\'
e 0
W, = ! = (x + 1e*,
2 12¢ (x + De* ( )
, (x + Dxe® g ; . e 15a™
amlen @ =———F—— == =5 W =—F5 — =x+FI
e e
Integrating u, and u, gives
14 2 3
u, = ——x>— —x- and u, = —x"+x

Hence
1 1 /| 1 i 1
¥y = (——x3 = _xz)er o (—xz iy x)xez’( = —x3e? + —x%%
3 . 2 6 2
2% 2x 1 3 .2x 1 9. 2x;
and Y=Y+ Y =6 + GoXe +gxe +5xe
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EXAMPLE 2

Solve 4y” + 36y = csc 3x.
SOLUTION We first put the equation in the standard form by dividing by 4:

|
y'+ 9y = 4 csc-3x.

Since the roots of the equation m* + 9 = 0 are m, = 3i and m, = —3i,

y. = ¢; cos 3x + ¢, sin 3x.

Using y;, = cos 3x, y, = sin 3x, and G(x) = I csc 3x, we obtain

W = cos 3x sin3x |
—38in3x Jvos3x
0 sin 3x 1
Wl — 1 g i
icsc3x 3 cos3x 4
w. =| 3x 0 |_ 1 cos3x
> |—3sin3x lcsc3x| 4 sin3x’
. ) W, 1 , W, 1 ¢os3x
Integrating ) = —=—— and u, = — = —-—;
W 12 W 12 sin3x
, 1 1 .
gives uy = ——x and wu, = —In Isin 3xl.
12 36
Th et 3+L('3)1I'3I
us Y, = — 5% €08 3% 36 sin 3x) In Isin 3xI.

The general solution is

1 1
y =Y.+ ¥y, = c;co83x + ¢, sin 3x — Excos 3+ 36 (sin 3x) In Isin 3x|.
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Exercises 3.5 (page: 140)

In Problems 1-18, solve each differential equation by variation of parameters.

1. Y/ +y=secx 2. y"+y=tanx
3 Y +y=sinx 4. y"+y=secfHtanf
5. y' + y = cos’x 6. '+ y=seckx
1. v/ — y=coshx 8. y' — y =sinh 2x
Ox
9. y' =9y == 10. 4y" —y=¢e"+3
o
1.y +3y +2y= Py =
VER = 12y -ty =
13. y" + 3y + 2y =sine" 14. y" — 2y’ + y = ¢ arctan ¢
15. V+ 2y +y=e¢"Int 16. 2y" + y' = 6x
17. 3y" — 6y’ + 6y = ¢"sec x 18. 4y — 4y’ +y = "V1 — i

1.4 Solutions of the Higher-Order D.Es (n > 2)

1.4.1 Higher-Order Homogeneous Linear DES
The characteristic equation of the differential equation
Y +a, 3"V ety +agy =0

IS

m" +a, m" +tam+ay, =0

General Solution for nth-Order Equations:

The general solution of the nth-order DE is obtained directly from the roots of its
characteristic equation, as in the following cases:

Case 1 If the roots m;, my,..., m, are all real and no two are equal, the solution is
m m
y=ce ™t +c, " +etc
Case 2 If mis a real root appearing k times, the solution is

y = e™(c; + cx + -+ cpx®1)

Case 3 If the complex roots are conjugate pairs of complex numbers:
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my, = axif, m,=y=tis,..
the solution is

y () = e** (C1cos Bz + Cysin Bx) + ™ (Cscos dx + Cysin dx) +
Case 4 If m = a x i are complex conjugate roots each appears k times, the solution is

y(z) = e (Cycos Bz + Cysin fz) + ze** (Cscos fr + Cysin fz) +--- + kLl (Cop—1 cos Bz + Cypsin fx)

EXAMPLE
Solve y" + 3y" —4y =0.

SOLUTION It should be apparent from inspection of m*> + 3m* — 4 = ( that one root is
m; = 1 and so m — 1 is a factor of m” + 3m* — 4. By division we find

m 4+ 3m* — 4= (m — 1)(m* + d4m + 4) = (m — )(m + 2)*,

and so the other roots are m, = m; = —2. Thus the general solution is

y=ciet + e P+ cyxe

EXAMPLE ]
sotve 22 4292 L0
olve - I - .
o Caxr Y

characteristic

SOLUTION The auxiliary equation m* + 2m* + 1 = (m* + 1)* = 0 has roots
m, =my; =1 andm, = my = —Ii.

Thus the solution is (with a=0, f=1 and k=2)

y(x) = ™ (Cycos fx + Cysin fz) + xe™ (Cscos fz + Cysin fz)

y=c;cosx+t ¢ysinx + ¢3xCOS x + ¢y x Sinx

Find the general solution of the differential equation

(4)

y —y=0.

Solution. The roots of the characteristic polynomial are m= 1

-1, 4, —i.
Thus, the general solution of the differential equation is

y(t) = cre’ + coe ™" + c3cost + ey sint.
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Solve the equation y™*) — y'"" +2y' =0

Solution: The characteristic equation is
m*— m3+2m=0
or
m(@m3 — m?+2)=0
m(m+ 1)(m? — 2m+2)=0
The characteristic equation has four distinct roots, two of which are complex:
m; =0, m, = —1, mg,=1%1i

The general solutionis y(x) = C; + Cee " + €* (Cscos x + Cysinx)

Exercises 3.3 (page:125)

In Problems 15-24, find the general solution of the given higher-order differential equation.
d’x  d’x
15. V' —4y" =5y =0 2. —— — —4x =0
g o dr®  dr?
16. Y —y=0
2. V" +3y"+3y'+y=0
17. y" = 5y"+3y" +9y =0

22. y"—6y"+ 12y =8y =0
18. V" +3y"—4y' — 12y =0
4) " "r_
Pu du 23 yV+y"+y 0

t—5 —2u= 24, YV —2y"+y=0

19.
dr®  di?
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1.4.1 Higher-Order Non-Homogeneous Linear DEs

In this section, we give methods for obtaining a particular solution y, once y. is known.

1- Undetermined Coefficients for Higher-Order DEs

We have already seen how to solve a second-order linear nonhomogeneous DEs with
constant coefficients. For higher-order nonhomogeneous differential equation, the exact

same method will work.

Solve y”" + y" = €' cos x.

SOLUTION From the characteristic equation m®> + m* = O we find m; = m, = 0and m; = —1.

Hence Y. =c¢; + cpx + cze ™.

With g(x) = e'cos x, we assume y, = Ae* cos x + Be' sin x.
From Y, + Y, =(—2A + 4B)e' cos x + (—4A — 2B)e" sinx = €' cos x

we get —2A + 4B =1, —4A — 2B = 0.

This system gives A = — {5 and B = 1,

so that y, = — i5€ cosx + 1€ sin x.

L T (- | .
The general solution is y=y.+y,=c; +cx +cze " — —e‘cosx+ _e'sinx.

Exercises 3.4 (page:135)
In Problems below, solve the given third-order DEs by undetermined coefficients.

21. y" —6y" =3 —cosx

22. y"' —2y" —4y" + 8y = 6xe**

23. V" —3y"+ 3y —y=x—4¢

24, y’”—y”—4y’-|—4y=5—ex+ezx
25. y + 2y +y=(x — 1)

26. Y — ' =dx + 2xe ™"
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2- Method of Variation of Parameters for Higher-Order DEs

This method will be illustrated here to find the particular solution y,. For the
nonhomogeneous second-order differential equation

YA Py e Py + Po(x)y = f(x)

Ye=cy1t oy, T oty

Yo%) = u (X)y (%) + ux(x)y,(x) + -+ w,(x0)y,(x)

where the u;, k = 1, 2, ..., n, are determined by the n equations

iy + oy + oo+ yu, =0
yiy + yuy + oo+ yu;, =0

" Puy + 3wy -+ V= f(x)

When n = 3, y, = U1y1 + UzY2 + Ugys, Where Yy, Yo, and ys are set of solutions of the
associated homogeneous DE, and us, Uy, us are determined from

, W W W
Uy, = — Uy = —, U3 = —
1% 0% %4
yi Y2 V3 0 y yi 0 y; yi »» O
W=1ly/ 2 yi|, Wi=| 0 y;, yi|, Wo=|y/ 0 yi|,and Ws=[y/ y, O
yioys vy f(x) y) yy i f(x) y3 yiy) f(x)

Exercises 3.5 (page:140)

In Problems 29 and 30, solve the given third-order DEs by variation of parameters.

29. V" +y' =tant¢ 30. V" + 4y =sec2x

Solution of Problem 29:

n

For y” +y' =0 wehave m®+m=0

then 7(r2 +1)=0andsor = 0orr = =i
therefore Y.= C, + C,cost + Csysint

Furthermore, y; = e =1, y, = ¢’

t cost = cost, and y; = e sint = sint
We have that: ¥y, = u1y; + U2Yy + U3Y3
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Yp = U1 +ug cost + ug sint
Thus we want to solve the following system of equations:
w) (1) +ubicost +alsint=10

u}(0) + ub(—sint) + us(cost) =0
u} (0) + uh(cost) + uf(sint) = tant

Now we have that:

[1  cost sint T
W=10 -—sint cost :l ) ]:
: —cost —sint
|0 —cost —sint
[0 cost sint
0 —sint  cost
tant —cost —sint i
= = =4ant CO.St B = tant
1 —sint cost

1 0 sint
0 0 cost

j 0 tant —sint 1 0 Sn.lt .
Uy = 1 =—|0 tant —sint| = —tantcost = —sint
0 0 cost
1 cost 0
0 —sint 0
, 0 —cost tant —gint 0 ) sin? ¢
Uz = = = —sinttant = —
1 —cost tant cost

: $ / ! ! A
We will now integrate u;, u,, and ug to get:

/u’l(t) dt = /tantdtzln | sect | +C

/u’Q(t) dt:/—sintdt:cost—l—D

L 2 -1
/ug(t)dt:/— il dt:/M dtz/(cost—sect)dt
cost cost

=sint + In | sect + tant | +E

Thus we have that:

y(t) = (In | sect | +C)(1) + (cost + D) cost + (sint + In | sect + tant | +E)sint
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