
1 
 

Unit One: Differential Equations 

 

(Reference: Advanced Engineering Mathematics, by Dennis G. Zill, 6th edition, 2018.) 

 

1.1 Basic Definitions and Concepts: 

An equation containing the derivatives of one or more dependent variables, with respect 

to one or more independent variables, is said to be a differential equation (DE). The 

derivative dy/dx of a function y =ϕ(x) is itself another function ϕ'(x) found by an 

appropriate rule. 

Ordinary Differential Equation (ODE) is a differential equation contains only 

ordinary derivatives of one or more functions with respect to a single independent 

variable.  

Partial Differential Equation (PDE) is an equation contains only partial derivatives of 

one or more functions of two or more independent variables. 

The order of a differential equation is the order of the highest derivative appearing in 

the equation. 

The degree of a differential equation is defined as the power to which the highest order 

derivative is raised. 

Notation 

The expressions                               are often used to represent, respectively, the first, 

second, third, fourth, . . ., nth derivatives of y with respect to the independent variable 

under consideration. 

If the independent variable is time, usually denoted by t, primes are often replaced by 

dots. Thus,                     represent                                                  , respectively. 
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We can express the nth-order ordinary differential equation in one dependent variable 

by the general form 

 

or by the normal form  

 

 

Linearity: An nth-order ordinary differential equation is said to be linear in the 

variable y if F is linear in  

A nonlinear ordinary differential equation is simply one that is not linear. 

Standard and Differential Forms 

Standard form for a first-order differential equation in the unknown function y(x) is  

y ′ = f (x,y) 

while the differential form is  

M(x, y) dx + N(x, y) dy = 0 
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A solution of a differential equation in the unknown function y and the independent 

variable x on the interval I is a function y(x) that satisfies the differential equation 

identically for all x in I. 

Note:  A particular solution of a differential equation is any one solution.  

          The general solution of a differential equation is the set of all solutions. 
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Initial-Value and Boundary-Value Problems 

A differential equation along with conditions on the unknown function and its 

derivatives, all given at the same value of the independent variable, constitutes an initial-

value problem (IVP). These conditions are initial conditions. If the conditions are given 

at more than one value of the independent variable, the problem is a boundary-value 

problem (BVP) and the conditions are boundary conditions. 

Typically, initial value problems involve time dependent functions, while boundary 

value problems are spatial. 

 

1.2 Solutions of the First Order D.Es 

1.2.1 Separable D.Es 

A first-order differential equation of the form  
𝑑𝑦

𝑑𝑥
= 𝑔(𝑥)ℎ(𝑦) 

is said to be separable or to have separable variables. For example, the differential 

equations 

 
are separable and nonseparable, respectively. To see this, note that we can factor the 

first equation as  

 

but in the second there is no way writing y + cos x as a product of a function of x times 

a function of y. 
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Exercises 2.2 (page 48): Solve exercises 1 to 27. 
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1.2.2 Exact Equations 

The first order ODE 

M(x, y)dx + N(x, y)dy = 0 

is said to be exact if a function f (x, y) exists such that the total differential 

d[f(x, y)] =  
∂f

∂x
dx +

∂f

∂y
dy = M(x, y)dx +  N(x, y)dy 

 

or M(x, y) = ∂f/ ∂x and N(x, y) = ∂f/ ∂y  

It follows directly that if 

M(x, y)dx + N(x, y)dy = 0 

is exact, then the total differential 

                                                                  d [f(x, y)] = 0, 

so the general solution of must be 

                                                                 f(x, y) = constant. 

Condition of Exactness:   M(x, y) dx + N(x, y) dy is an exact differential if and 

only if  
𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
 

Steps for Solving an Equation You Know to Be Exact: 

1- Match the equation to the form  

𝑑𝑓 = (
𝜕𝑓

𝜕𝑥
) 𝑑𝑥 + (

𝜕𝑓

𝜕𝑦
) 𝑑𝑦 

to identify 𝜕𝑓/𝜕𝑥 and 𝜕𝑓/𝜕𝑦 . 

2- Integrate 𝜕𝑓/𝜕𝑥 with respect to x, writing the constant of integration as 𝑘(𝑦). 

3- Differentiate with respect to y and set the result equal to 𝜕𝑓/𝜕𝑦 to find 𝑘′(𝑦). 

4- Integrate to find 𝑘(𝑦) and determine 𝑓(𝑥, 𝑦). 

5- Write the solution of the exact equation as 𝑓(𝑥, 𝑦) = 𝐶. 
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Example (2): Show that the following equation is exact and find its general solution: 

{3x2 + 2y + 2 cosh(2x + 3y)}dx + {2x + 2y + 3 cosh(2x + 3y)}dy = 0 

Solution: 

            M(x, y) = 3x2 + 2y + 2 cosh(2x + 3y),  

and      N(x, y) =2x + 2y + 3 cosh(2x + 3y),  

then     My = 2 + 6 sinh(2x + 3y) 

and      Nx = 2 + 6 sinh(2x + 3y) 

so, as My = Nx the equation is exact: 

𝑓(𝑥, 𝑦)  =  ∫ 𝑀(𝑥, 𝑦)𝑑𝑥   =  ∫{3𝑥2  +  2𝑦 +  2 𝑐𝑜𝑠ℎ(2𝑥 +  3𝑦)}𝑑𝑥  

             = x3 + 2xy + sinh(2x + 3y) + k(y) 

𝜕𝑓

𝜕𝑦
= 2𝑥 + 3 cosh(2x +  3y) + 𝑘′(𝑦) = 𝑁 = 2x +  2y +  3 cosh(2x +  3y) 

or 𝑘′(𝑦) = 2𝑦 and then 

𝑘(𝑦) = ∫ 2𝑦 𝑑𝑦 =  𝑦2 
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so  f(x, y) = x3 + 2xy + y2 + sinh(2x + 3y) 

and the general solution is x3 + 2xy + y2 + sinh(2x + 3y) = C 

(Do you know another method to find k(y) ?) 

 

To learn more about the exact equations, see examples 2 and 3 in pages 61 and 62. 

 

1.2.3 Integrating Factors  

 

It can be shown that every nonexact differential equation M(x, y)dx + N(x, y)dy = 0 can 

be made exact by multiplying both sides by a suitable factor called integrating factor 

μ(x,y). 

 If (My – Nx)/N  is a function of x alone, then 

𝜇(𝑥) =  𝑒∫
𝑀𝑦 − 𝑁𝑥

𝑁
 𝑑𝑥

 

 

 If (Nx – My)/M  is a function of y alone, then 

𝜇(𝑦) =  𝑒∫
𝑁𝑥 − 𝑀𝑦

𝑀
 𝑑𝑦

 

 

As an example, the equation  

2y dx+ x dy=0 

is not exact, while the equation  

2xy dx+ x2 dy =0 

obtained by multiplying both sides by x, is exact.  
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Exercises 2.4 (page 64): Solve exercises 1 to 36. 

 

1.2.4 Linear First Order Equations 

A first-order linear differential equation has the form 

y'+ p(x)y = q(x)                        ……………………(1) 

An integrating factor for equation (1) is  

𝜇(𝑥) =  𝑒∫ 𝑝(𝑥) 𝑑𝑥                         ……………………..(2) 

 

 and the general solution of equation (1) is  

                               𝑦 =
1

𝜇(𝑥)
∫ 𝜇(𝑥)𝑞(𝑥)𝑑𝑥                 ……………………..(3) 

 

Note: When q(x) = 0, the linear equation (1) is said to be homogeneous; otherwise, it 

is nonhomogeneous. 

  

Steps for solving a linear first order equation: 

1- Put it in standard form, as in equation (1). 

2- Find the integrating factor from equation (2). 

3- Use equation (3) to find y. 
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Example 1: Solve  x y'− 3 y = x2. 

Solution: By dividing both sides on x, the equation can be written as  y'− (3 / x) y = x 

So it is linear, with p(x)= −3/x and q(x)=x.  

 

∫ 𝑝(𝑥)𝑑𝑥 = ∫ −
3

𝑥
 𝑑𝑥 =  −3 𝑙𝑛 𝑥 

𝜇(𝑥) =  𝑒∫ 𝑝(𝑥)𝑑𝑥 = 𝑒−3 ln 𝑥 =
1

𝑥3
 

 

𝑦 =
1

𝜇(𝑥)
∫ 𝜇(𝑥)𝑞(𝑥)𝑑𝑥 =

1

1
𝑥3

 ∫
1

𝑥3
 𝑥 𝑑𝑥 = 𝑥3  (

1

𝑥
+ 𝐶) = 𝐶𝑥3 − 𝑥2 

 

The solution is 𝑦 = 𝐶𝑥3 − 𝑥2.  

 

Remark: 

Occasionally a first-order differential equation is not linear in one variable but is linear 

in the other variable. For example, the differential equation 

𝑑𝑦

𝑑𝑥
=

1

𝑥 + 𝑦2
 

is not linear in the variable y. But its reciprocal 

𝑑𝑥

𝑑𝑦
= 𝑥 + 𝑦2  or   

𝑑𝑥

𝑑𝑦
− 𝑥 = 𝑦2 

is recognized as linear in the variable x. You should verify that the integrating factor  

𝜇(𝑦) =  𝑒∫ 𝑝(𝑦)𝑑𝑦 = 𝑒∫(−1)𝑑𝑦 = 𝑒−𝑦 

and integration by parts yield an implicit solution of the given equation: 

𝑥 =  −𝑦2 − 2𝑦 − 2 + 𝑐𝑒𝑦. 

 

Exercises 2.3 (page 57): Solve exercises 1 to 32. 
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1.2.5 Homogeneous D.Es 

      A function f (x, y) is said to be homogeneous of degree n, if f (tx, ty) = t n f (x, y) for 

some real number n.  

 

Examples 

 
 

In addition, the first order ODE in differential form  

P(x, y)dx + Q(x, y)dy = 0 

is called homogeneous if P and Q are homogeneous functions of the same degree or, 

equivalently, if when written in the form  

𝑑𝑦

𝑑𝑥
= ℎ(𝑥, 𝑦) 

the homogeneous function h(x, y) can be written as  h(x, y) = F(y/x). We can change this 

equation into a separable equation by the substitution y=vx, then: 

𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑣𝑥) = 𝑣 + 𝑥

𝑑𝑣

𝑑𝑥
= 𝐹(𝑣)  

 

which can be rearranged to give  

𝑑𝑥

𝑥
+

𝑑𝑣

𝑣 − 𝐹(𝑣)
= 0 
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Example 1: Show that the equation 

𝑑𝑦

𝑑𝑥
= −

𝑥2 + 𝑦2

2𝑥𝑦
 

is homogeneous and find the solution that satisfies the condition y(1)=1.  

Solution: 

𝑑𝑦

𝑑𝑥
= −

1+(
𝑦

𝑥
)2

2(
𝑦

𝑥
)

  

𝐹(𝑣) = −
1+𝑣2

2𝑣
     where v=y/x 

𝑑𝑥

𝑥
+

𝑑𝑣

𝑣+
1+𝑣2

2𝑣

= 0  or  
𝑑𝑥

𝑥
+

2𝑣 𝑑𝑣

1+3𝑣2 = 0  

The solution of this equation is 

 ln |𝑥| +
1

3
ln( 1 + 3𝑣2) = 𝐶 

or 𝑥3( 1 + 3𝑣2) = ±𝑒3𝐶 = 𝐶1 

we substitute v=y/x to find the corresponding xy-equation: 

          𝑥3( 1 + 3
𝑦2

𝑥2
) = 𝐶1     

or     𝑥3 + 3𝑥𝑦2 = 𝐶1 

        (13 + 3(1)(1)2) = 𝐶1   or 𝐶1 = 4 

        The solution is 𝑥3 + 3𝑥𝑦2 = 4 

 

1.2.6 Bernoulli’s Equation 

The Bernoulli equation is a nonlinear first order DE with the standard form 

𝑑𝑦

𝑑𝑥
+ 𝑃(𝑥)𝑦 = 𝑄(𝑥)𝑦𝑛 

1- When n = 0 the equation is First Order Linear DE.  

2- When n = 1 the equation can be solved using Separation of Variables.  

3- For other values of n the equation cannot be solved by separation of variables or 

linearity or homogeneity, but we can solve it by substituting 

u = y1−n 

and turning it into a linear differential equation (and then solve that). 
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and thus, the Bernoulli equation becomes  

𝑑𝑢

𝑑𝑥
+ (1 − 𝑛)𝑃(𝑥)𝑢 = (1 − 𝑛)𝑄(𝑥)               

  (Prove that !) 

Taking an integrating factor as  

𝜇(𝑥) =  𝑒∫(1−𝑛) 𝑃(𝑥) 𝑑𝑥                          

 

 then the general solution of Bernoulli equation is 

                               𝑢 =
1

𝜇(𝑥)
∫(1 − 𝑛) 𝜇(𝑥) 𝑄(𝑥)𝑑𝑥      
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Exercises 2.5 (page 68): Solve exercises 1 to 22. 

 

  Additional Exercises: Solve the following DEs: 

             DE’s                                                                                  Answers            .                          
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1.3 Solutions of the Second-Order D.Es 

1.3.1 Second-Order DE Reducible to First Order 

A second order DE has the general form 

F(x, y, y′, y′′) = 0 

Equation above is called reducible second order DE if either the dependent variable y 

or the independent variable x is missing in it. 

Case I : F(x, y′, y′′) = 0 (Dependent variable y missing) 

The substitution  𝑝 = 𝑦′ =
𝑑𝑦

𝑑𝑥
 , 𝑦′′ =  

𝑑𝑝

𝑑𝑥
   results in F( x, p, p′ ) = 0. 

Case II : F(y, y′, y′′) = 0 (Independent variable x missing) 

The substitution  𝑝 = 𝑦′ =
𝑑𝑦

𝑑𝑥
 , 𝑦′′ =  

𝑑𝑝

𝑑𝑦
 
𝑑𝑦

𝑑𝑥
 = 𝑝

𝑑𝑝

𝑑𝑦
    results in F( y, p, 𝑝

𝑑𝑝

𝑑𝑦
 ) = 0. 

Example 1: Solve the equation  xy′′ + 2y′= 6x. 

Solution:    Let 𝑝 = 𝑦′ =
𝑑𝑦

𝑑𝑥
 and  𝑦′′ =  

𝑑𝑝

𝑑𝑥
      , then  

           xp′+ 2p= 6x  

or       p′+2xp= 6,     which is a linear first order equation. 

 

𝑝 =
1

𝑥2
 ∫ 6𝑥2 𝑑𝑥 = 2𝑥 +

𝐶1

𝑥2
 

𝑦 = ∫ (2𝑥 +
𝐶1

𝑥2
) 𝑑𝑥 =  𝑥2 −   

𝐶1

𝑥
+  𝐶2 

Example 2: Solve the equation yy′′ = (y′)2. 

Solution:  
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Example 3: Solve the equation    

Solution: 

 

Example 4: Solve the equation 
𝑑2𝑦

𝑑2𝑥
+ 𝑦 = 0. 

Solution: Let 𝑝 =
𝑑𝑦

𝑑𝑥
 , 𝑦′′ = 𝑝

𝑑𝑝

𝑑𝑦
 

𝑝
𝑑𝑝

𝑑𝑦
+ 𝑦 = 0     or     𝑝𝑑𝑝 + 𝑦𝑑𝑦 = 0 

𝑝2

2
+

𝑦2

2
= 𝐶 , let 𝐶 =

𝐶1
2

2
 

then  
𝑝2

2
+

𝑦2

2
=

𝐶1
2

2
→   𝑝 =

𝑑𝑦

𝑑𝑥
=  ±√𝐶1 − 𝑦2 

𝑑𝑦

±√𝐶1 − 𝑦2
=  ±𝑑𝑥 

sin−1 𝑦

𝐶1
=  ±(𝑥 + 𝐶2)    or    𝑦 =  𝐶1 sin[±(𝑥 + 𝐶2)] =  ± 𝐶1 sin(𝑥 + 𝐶2) 

𝑦 =  𝐶1 sin(𝑥 + 𝐶2)      (Since 𝐶1 is arbitrary, there is no need for ± sign) 
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Exercises: Find general solutions of the following reducible second order differential 

equations. 

 

1.3.2 Homogeneous Linear Equations with Constant Coefficients 

A linear nth-order differential equation of the form  

 

is said to be homogeneous, whereas an equation 

 

with g(x) not identically zero is said to be nonhomogeneous. 

If yl(x) and y2(x) are two solutions to the linear homogeneous equation, then for any 

constants cl and c2, the function                                                  is also a solution. 

 

Differential Operator 

Differentiation is often denoted by the capital letter D; that is 

𝑑𝑦

𝑑𝑥
= 𝐷𝑦 

The symbol D is called a differential operator. 

Examples: D(cos 4x)= − 4 sin 4x ,  D(5x3 −  6x2)= 15 x2 − 12x 
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 The Characteristic Equation 

Consider the special case of linear second order DE with constant coefficients: 

𝑎
𝑑2𝑦

𝑑2𝑥
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0 

If we try a solution of the form y= emx, then  

 

Since emx is never zero for real values of x, then  

 

This last equation is called the characteristic equation. There will be three forms of the 

general solution corresponding to the type of the roots m1 and m2.  

Case I : Distinct Real Roots 

If m1 and m2 are unequal real roots, the general solution is: 

 

Case II : Repeated Real Roots 

When m1 and m2 are equal real roots (m1=m2,) the general solution is: 

 

Case III : Conjugate Complex Roots 

If m1 and m2 are complex, or m1= α+iβ and m2= α−iβ, the general solution is 
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REMARKS:  

 (1) Characteristic equations are only defined for linear homogeneous differential 

equations with constant coefficients. 

 (2) The method of this section also works for homogeneous linear first-order 

differential equations 𝑎𝑦′ + 𝑏𝑦 = 0 with constant coefficients. 

 

Exercises 3.3 (page 125): Solve exercises 1 to 14, and exercises 29 to 34. 
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1.3.2 Non-Homogeneous Linear Equations with Constant Coefficients  

 
 

1- Method of Undetermined Coefficients    
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2- Method of Variation of Parameters 

This is a general method for finding a particular solution of the nonhomogeneous 

equation 

 

The method consists of replacing the constants cl and c2 in the complementary solution 

by functions u1 = u1 (x) and u2 = u2 (x). 

 

To use this method, follow the following steps: 

1. Solve the associated homogeneous equation 

to find the functions y1 and y2. 

2. Solve the equations (see page 137 for complete derivation): 

𝑦1𝑢1
′ + 𝑦2𝑢2

′ = 0 

𝑦1
′ 𝑢1

′ + 𝑦2
′ 𝑢2

′ = 𝐺(𝑥) 

 

 

to find the functions u1' and u2'. 

3. Integrate u1' and u2' to find the functions u1= u1(x) and u2= u2(x). 

4. Write down the particular solution as yP = u1 y1+ u2 y2· 
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1.4 Solutions of the Higher-Order D.Es (n > 2) 

1.4.1 Higher-Order Homogeneous Linear DEs 

The characteristic equation of the differential equation 

 

is  

 

General Solution for nth-Order Equations: 

The general solution of the nth-order DE is obtained directly from the roots of its 

characteristic equation, as in the following cases: 

Case 1   If the roots m1, m2,..., mn are all real and no two are equal, the solution is 

 

Case 2   If m is a real root appearing k times, the solution is 

𝑦 =  𝑒𝑚𝑥(𝑐1 + 𝑐2𝑥 + ⋯ + 𝑐𝑘𝑥𝑘−1) 

 

Case 3   If the complex roots are conjugate pairs of complex numbers: 



29 
 

   𝑚1,2 =  𝛼 ± 𝑖𝛽 ,  𝑚1,2 = 𝛾 ± 𝑖𝛿, …   

the solution is 

 

Case 4   If m = α ± βi are complex conjugate roots each appears k times, the solution is 
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Solve the equation 𝑦(4) − 𝑦′′′ + 2𝑦′ = 0 

Solution: The characteristic equation is  

𝑚4 − 𝑚3 + 2𝑚 = 0 

or  

𝑚(𝑚3 −  𝑚2 + 2) = 0 

𝑚(𝑚 + 1)(𝑚2 −  2𝑚 + 2) = 0 

The characteristic equation has four distinct roots, two of which are complex: 

𝑚1 = 0, 𝑚2 = −1, 𝑚3,4 = 1 ± 𝑖 

The general solution is  
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1.4.1 Higher-Order Non-Homogeneous Linear DEs 

In this section, we give methods for obtaining a particular solution yp once yc is known.  

 

1- Undetermined Coefficients for Higher-Order DEs 

We have already seen how to solve a second-order linear nonhomogeneous DEs with 

constant coefficients.  For higher-order nonhomogeneous differential equation, the exact 

same method will work.  

 

Exercises 3.4 (page:135) 

In Problems below, solve the given third-order DEs by undetermined coefficients. 
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2- Method of Variation of Parameters for Higher-Order DEs 

This method will be illustrated here to find the particular solution yp. For the 

nonhomogeneous second-order differential equation 

 

 

 

 

When n = 3, yp = u1y1 + u2y2 + u3y3, where y1, y2, and y3 are set of solutions of the 

associated homogeneous DE, and u1, u2, u3 are determined from  

 

 
 

Exercises 3.5 (page:140) 

In Problems 29 and 30, solve the given third-order DEs by variation of parameters. 

 
 

Solution of Problem 29: 
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